Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2005 Jun 15;174(12):7506-15.
doi: 10.4049/jimmunol.174.12.7506.

Release of high mobility group box 1 by dendritic cells controls T cell activation via the receptor for advanced glycation end products

Affiliations

Release of high mobility group box 1 by dendritic cells controls T cell activation via the receptor for advanced glycation end products

Ingrid E Dumitriu et al. J Immunol. .

Abstract

High mobility group box 1 (HMGB1) is an abundant and conserved nuclear protein that is released by necrotic cells and acts in the extracellular environment as a primary proinflammatory signal. In this study we show that human dendritic cells, which are specialized in Ag presentation to T cells, actively release their own HMGB1 into the extracellular milieu upon activation. This secreted HMGB1 is necessary for the up-regulation of CD80, CD83, and CD86 surface markers of human dendritic cells and for IL-12 production. The HMGB1 secreted by dendritic cells is also required for the clonal expansion, survival, and functional polarization of naive T cells. Using neutralizing Abs and receptor for advanced glycation end product-deficient (RAGE(-/-)) cells, we demonstrate that RAGE is required for the effect of HMGB1 on dendritic cells. HMGB1/RAGE interaction results in downstream activation of MAPKs and NF-kappaB. The use of an ancient signal of necrosis, HMGB1, by dendritic cells to sustain their own maturation and for activation of T lymphocytes represents a profitable evolutionary mechanism.

PubMed Disclaimer

Publication types

MeSH terms