Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2005 May 22;122(20):204322.
doi: 10.1063/1.1906205.

On geometries of stacked and H-bonded nucleic acid base pairs determined at various DFT, MP2, and CCSD(T) levels up to the CCSD(T)/complete basis set limit level

Affiliations

On geometries of stacked and H-bonded nucleic acid base pairs determined at various DFT, MP2, and CCSD(T) levels up to the CCSD(T)/complete basis set limit level

Iwona Dabkowska et al. J Chem Phys. .

Abstract

The geometries and interaction energies of stacked and hydrogen-bonded uracil dimers and a stacked adeninecdots, three dots, centeredthymine pair were studied by means of high-level quantum chemical calculations. Specifically, standard as well as counterpoise-corrected optimizations were performed at second-order Moller-Plesset (MP2) and coupled cluster level of theory with single, double, and perturbative triple excitations [CCSD(T)] levels with various basis sets up to the complete basis set limit. The results can be summarized as follows: (i) standard geometry optimization with small basis set (e.g., 6-31G(*)) provides fairly reasonable intermolecular separation; (ii) geometry optimization with extended basis sets at the MP2 level underestimates the intermolecular distances compared to the reference CCSD(T) results, whereas the MP2/cc-pVTZ counterpoise-corrected optimization agrees well with the reference geometries and, therefore, is recommended as a next step for improving MP2/cc-pVTZ geometries; (iii) the stabilization energy of stacked nucleic acids base pairs depends considerably on the method used for geometry optimization, so the use of reliable geometries, such as counterpoise-corrected MP2/cc-pVTZ ones, is recommended; (iv) the density functional theory methods fail completely in locating the energy minima for stacked structures and when the geometries from MP2 calculations are used, the resulting stabilization energies are strongly underestimated; (v) the self-consistent charges-density functional tight binding method, with inclusion of the empirical dispersion energy, accurately reproduces interaction energies and geometries of dispersion-bonded (stacked) complexes; this method can thus be recommended for prescanning the potential energy surfaces of van der Waals complexes.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources