Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2005 Jul 15;350(3):476-88.
doi: 10.1016/j.jmb.2005.05.008.

Functional cartography of the ectodomain of the type I interferon receptor subunit ifnar1

Affiliations

Functional cartography of the ectodomain of the type I interferon receptor subunit ifnar1

Peter Lamken et al. J Mol Biol. .

Abstract

Ligand-induced cross-linking of the type I interferon (IFN) receptor subunits ifnar1 and ifnar2 induces a pleiotrophic cellular response. Several studies have suggested differential signal activation by flexible recruitment of the accessory receptor subunit ifnar1. We have characterized the roles of the four Ig-like sub-domains (SDs) of the extracellular domain of ifnar1 (ifnar1-EC) for ligand recognition and receptor assembling. Various sub-fragments of ifnar1-EC were expressed in insect cells and purified to homogeneity. Solid phase binding assays with the ligands IFN(alpha)2 and IFN(beta) revealed that all three N-terminal SDs were required and sufficient for ligand binding, and that IFN(alpha)2 and IFN(beta) compete for this binding site. Cellular binding assays with different fragments, however, highlighted the key role of the membrane-proximal SD for the formation of an in situ IFN-receptor complex. Even substitution with the corresponding SD from homologous cytokine receptors did not restore high-affinity ligand binding. Receptor assembling analysis on supported lipid bilayers in vitro revealed that the membrane-proximal SD controls appropriate orientation of the receptor on the membrane, which is required for efficient association of ifnar1 into the ternary complex.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources