Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2005 Aug;156(7):807-13.
doi: 10.1016/j.resmic.2005.03.011.

Tellurite effects on Rhodobacter capsulatus cell viability and superoxide dismutase activity under oxidative stress conditions

Affiliations
Free article

Tellurite effects on Rhodobacter capsulatus cell viability and superoxide dismutase activity under oxidative stress conditions

Francesca Borsetti et al. Res Microbiol. 2005 Aug.
Free article

Abstract

Cells of the facultative photosynthetic bacterium Rhodobacter capsulatus (MT1131 strain) incubated with 10 microg ml-1 of the toxic oxyanion tellurite (TeO2-(3)) exhibited an increase in superoxide dismutase activity. The latter effect was also seen upon incubation with sublethal amounts of paraquat, a cytosolic generator of superoxide anions (O2-), in parallel with a strong increase in tellurite resistance (TeR). A mutant strain (CW10) deficient in SenC, a protein with similarities to peroxiredoxin/thiol:disulfide oxidoreductases and a homologue of mitochondrial Sco proteins, was constructed by interposon mutagenesis via the gene transfer agent system. Notably, the absence of SenC affected R. capsulatus resistance to periplasmic O2- generated by xanthine/xanthine oxidase but not to cytosolic O2- produced by paraquat. Further, the absence of SenC did not affect R. capsulatus tellurite resistance. We conclude that: (1) cytosolic-generated O2- enhances TeR of this bacterial species; (2) small amounts of tellurite increase SOD activity so as to mimic the early cell response to oxidative stress; (3) SenC protein is required in protection of R. capsulatus against periplasmic oxidative stress; and finally, (4) SenC protein is not involved in TeR, possibly because tellurite does not generate O-2 at the periplasmic space level.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources