Pathways to the analysis of microarray data
- PMID: 15950303
- DOI: 10.1016/j.tibtech.2005.05.011
Pathways to the analysis of microarray data
Abstract
The development of microarray technology allows the simultaneous measurement of the expression of many thousands of genes. The information gained offers an unprecedented opportunity to fully characterize biological processes. However, this challenge will only be successful if new tools for the efficient integration and interpretation of large datasets are available. One of these tools, pathway analysis, involves looking for consistent but subtle changes in gene expression by incorporating either pathway or functional annotations. We review several methods of pathway analysis and compare the performance of three, the binomial distribution, z scores, and gene set enrichment analysis, on two microarray datasets. Pathway analysis is a promising tool to identify the mechanisms that underlie diseases, adaptive physiological compensatory responses and new avenues for investigation.
Similar articles
-
Genome Expression Pathway Analysis Tool--analysis and visualization of microarray gene expression data under genomic, proteomic and metabolic context.BMC Bioinformatics. 2007 Jun 2;8:179. doi: 10.1186/1471-2105-8-179. BMC Bioinformatics. 2007. PMID: 17543125 Free PMC article.
-
Challenges and prospects in the analysis of large-scale gene expression data.Brief Bioinform. 2004 Dec;5(4):313-27. doi: 10.1093/bib/5.4.313. Brief Bioinform. 2004. PMID: 15606968
-
An interactive tool for visualization of relationships between gene expression profiles.BMC Bioinformatics. 2006 Apr 6;7:193. doi: 10.1186/1471-2105-7-193. BMC Bioinformatics. 2006. PMID: 16600045 Free PMC article.
-
Dissecting complex transcriptional responses using pathway-level scores based on prior information.BMC Bioinformatics. 2007 Sep 27;8 Suppl 6(Suppl 6):S6. doi: 10.1186/1471-2105-8-S6-S6. BMC Bioinformatics. 2007. PMID: 17903287 Free PMC article. Review.
-
Molecular networks in microarray analysis.J Bioinform Comput Biol. 2007 Apr;5(2B):429-56. doi: 10.1142/s0219720007002795. J Bioinform Comput Biol. 2007. PMID: 17636854 Review.
Cited by
-
THINK Back: KNowledge-based Interpretation of High Throughput data.BMC Bioinformatics. 2012 Mar 13;13 Suppl 2(Suppl 2):S4. doi: 10.1186/1471-2105-13-S2-S4. BMC Bioinformatics. 2012. PMID: 22536867 Free PMC article.
-
Data-driven analysis and druggability assessment methods to accelerate the identification of novel cancer targets.Comput Struct Biotechnol J. 2022 Nov 24;21:46-57. doi: 10.1016/j.csbj.2022.11.042. eCollection 2023. Comput Struct Biotechnol J. 2022. PMID: 36514341 Free PMC article. Review.
-
The necessity of adjusting tests of protein category enrichment in discovery proteomics.Bioinformatics. 2010 Dec 15;26(24):3007-11. doi: 10.1093/bioinformatics/btq541. Epub 2010 Nov 9. Bioinformatics. 2010. PMID: 21068002 Free PMC article.
-
Implementing genome-driven personalized cardiology in clinical practice.J Mol Cell Cardiol. 2018 Feb;115:142-157. doi: 10.1016/j.yjmcc.2018.01.008. Epub 2018 Jan 16. J Mol Cell Cardiol. 2018. PMID: 29343412 Free PMC article. Review.
-
Knowledge based identification of essential signaling from genome-scale siRNA experiments.BMC Syst Biol. 2009 Aug 5;3:80. doi: 10.1186/1752-0509-3-80. BMC Syst Biol. 2009. PMID: 19653913 Free PMC article.
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources