Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2005 Aug 18;138(2):145-55.
doi: 10.1016/j.molbrainres.2005.04.005.

Changes in hippocampal GABAA receptor subunit composition in bipolar 1 disorder

Affiliations

Changes in hippocampal GABAA receptor subunit composition in bipolar 1 disorder

Brian Dean et al. Brain Res Mol Brain Res. .

Abstract

Postmortem CNS studies have suggested an uncoupling of the gamma-aminobutyric acid (GABA) and benzodiazepine binding sites on the hippocampal GABA(A) receptor in schizophrenia. The GABA(A) receptor is an assembly of discrete subunits that form a ligand-gated ion channel, the binding characteristics of which are defined by receptor subunit composition. Thus, a likely explanation for an uncoupling between the GABA and benzodiazepine binding sites on the GABA(A) receptor would be a change in receptor subunit composition. To test this hypothesis we measured the density of GABA ([(3)H]muscimol) and benzodiazepine ([(3)H]flumazenil) binding sites on the GABA(A) receptor in hippocampi, obtained postmortem, from schizophrenic, bipolar I disorder and control subjects. In addition, we measured the amount of [(3)H]flumazenil binding that could be displaced with zolpidem and clonazepam. Levels of both [(3)H]muscimol and [(3)H]flumazenil binding were significantly decreased in part of the CA2 from subjects with schizophrenia; the decrease in [(3)H]flumazenil being due to decreases in both zolpidem-sensitive and -insensitive radioligand binding. There were complex regionally specific changes in [(3)H]muscimol binding in the hippocampus from subjects with bipolar I disorder but there were no significant changes in the overall levels of [(3)H]flumazenil binding. There were significant decreases in zolpidem-sensitive and increases in zolpidem-insensitive [(3)H]flumazenil binding in most regions of the sections of the hippocampal formation studied in bipolar I disorder. Unlike [(3)H]flumazenil, zolpidem does not bind to the alpha5 subunit of the GABA(A) receptor; therefore, we postulate that there is an increase in GABA(A) receptors containing alpha5 subunit in the hippocampus from subjects with bipolar I disorder.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms