Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2005 Aug;29(8):654-61.
doi: 10.1016/j.cellbi.2005.03.019.

In vitro hematopoietic differentiation of human embryonic stem cells induced by co-culture with human bone marrow stromal cells and low dose cytokines

Affiliations

In vitro hematopoietic differentiation of human embryonic stem cells induced by co-culture with human bone marrow stromal cells and low dose cytokines

Jian Wang et al. Cell Biol Int. 2005 Aug.

Abstract

Human embryonic stem (hES) cells randomly differentiate into multiple cell types during embryoid body (EB) development and limited studies have focused on directed hematopoietic differentiation. Here, we report that the treatment of hES cells during EBs development with a combination of low dose hematopoietic cytokines, including stem cell factor (SCF), Flt-3 ligand, vascular endothelial growth factor (VEGF) and human bone marrow stromal cells (hBMSCs), generated cell clusters that contained 8.81% KDR-positive hemangioblasts, 9.94% CD34-positive hematopoietic stem cells and 25.7% CD45-positive mature hematopoietic cells, and expressed hematopoietic genes such as KDR, stem cell leukemia (scl) and runt-related transcription factor 1 (Runx1). We provide the first evidence for the role of the cytokine-hBMSCs combination in promoting hematopoietic differentiation of hES cells, and thus provide the potential for generation of hematopoietic cells, as well as for understanding early developmental events that govern the initiation of hematopoiesis in humans.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources