Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2005 Jul 12;4(7):836-44.
doi: 10.1016/j.dnarep.2005.05.001.

Repair of the three main types of bipyrimidine DNA photoproducts in human keratinocytes exposed to UVB and UVA radiations

Affiliations

Repair of the three main types of bipyrimidine DNA photoproducts in human keratinocytes exposed to UVB and UVA radiations

Sophie Courdavault et al. DNA Repair (Amst). .

Abstract

Induction of DNA damage by solar UV radiation is a key event in the development of skin cancers. Bipyrimidine photoproducts, including cyclobutane pyrimidine dimers (CPDs), (6-4) photoproducts (64 PPs) and their Dewar valence isomers, have been identified as major UV-induced DNA lesions. In order to identify the predominant and most persistent lesions, we studied the repair of the three types of photolesions in primary cultures of human keratinocytes. Specific and quantitative data were obtained using HPLC associated with tandem mass spectrometry. As shown in other cell types, 64 PPs are removed from UVB-irradiated keratinocytes much more efficiently than CPDs. In contrast, CPDs are still present in high amounts when cells recover their proliferation capacities after cell cycle arrest and elimination of a part of the population by apoptosis. The predominance of CPDs is still maintained when keratinocytes are exposed to a combination of UVB and UVA. Under these conditions, 64 PPs are converted into their Dewar valence isomers that are as efficiently repaired as their (6-4) precursors. Exposure of cells to pure UVA radiation generates thymine cyclobutane dimers that are slightly less efficiently repaired than CPDs produced upon UVB irradiation. Altogether, our results show that CPDs are the most frequent and the less efficiently repaired bipyrimidine photoproducts irrespectively of the applied UV treatment.

PubMed Disclaimer

Similar articles

Cited by

Substances

LinkOut - more resources