Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2005 Sep;107(3):377-91.
doi: 10.1016/j.pharmthera.2005.04.003.

Abnormal ryanodine receptor function in heart failure

Affiliations
Review

Abnormal ryanodine receptor function in heart failure

Masafumi Yano et al. Pharmacol Ther. 2005 Sep.

Abstract

The abnormally regulated release of Ca2+ from an intracellular Ca2+ store, the sarcoplasmic reticulum (SR), is the mechanism underlying contractile and relaxation dysfunctions in heart failure (HF). According to recent reports, protein kinase A (PKA)-mediated hyperphosphorylation of ryanodine receptor (RyR) in the SR has been shown to cause the dissociation of FK506 binding protein (FKBP) 12.6 from the RyR in heart failure. This causes an abnormal Ca2+ leak through the Ca2+ channel located in the RyR, leading to an increase in the cytosolic Ca2+ during diastole, prolongation of the Ca2+ transient, and delayed/slowed diastolic Ca2+ re-uptake. More recently, a considerable number of disease-linked mutations in the RyR have been reported in patients with catecholaminergic polymorphic ventricular tachycardia (CPVT) or arrhythmogenic right ventricular dysplasia type 2. An analysis of the disposition of these mutation sites within well-defined domains of the RyR polypeptide chain has led to the new concept that interdomain interactions among these domains play a critical role in channel regulation, and an altered domain interaction causes channel dysfunction in the failing heart. The knowledge gained from the recent literature concerning the critical proteins and the changes in their properties under pathological conditions has brought us to a better position to develop new pharmacological or genetic strategies for the treatment of heart failure or cardiac arrhythmia. A considerable body of evidence reviewed here indicates that abnormal RyR function plays an important role in the pathogenesis of heart failure. This review also covers some controversial issues in the literature concerning the involvement of phosphorylation and FKBP12.6.

PubMed Disclaimer

Publication types

MeSH terms