Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2005 Aug 15;21(16):3340-6.
doi: 10.1093/bioinformatics/bti535. Epub 2005 Jun 9.

Efficient sorting of genomic permutations by translocation, inversion and block interchange

Affiliations

Efficient sorting of genomic permutations by translocation, inversion and block interchange

Sophia Yancopoulos et al. Bioinformatics. .

Abstract

Motivation: Finding genomic distance based on gene order is a classic problem in genome rearrangements. Efficient exact algorithms for genomic distances based on inversions and/or translocations have been found but are complicated by special cases, rare in simulations and empirical data. We seek a universal operation underlying a more inclusive set of evolutionary operations and yielding a tractable genomic distance with simple mathematical form.

Results: We study a universal double-cut-and-join operation that accounts for inversions, translocations, fissions and fusions, but also produces circular intermediates which can be reabsorbed. The genomic distance, computable in linear time, is given by the number of breakpoints minus the number of cycles (b-c) in the comparison graph of the two genomes; the number of hurdles does not enter into it. Without changing the formula, we can replace generation and re-absorption of a circular intermediate by a generalized transposition, equivalent to a block interchange, with weight two. Our simple algorithm converts one multi-linear chromosome genome to another in the minimum distance.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources