Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2005 Sep;25(5):521-44.
doi: 10.1002/med.20035.

Morphine-6-glucuronide: actions and mechanisms

Affiliations
Review

Morphine-6-glucuronide: actions and mechanisms

Gavin J Kilpatrick et al. Med Res Rev. 2005 Sep.

Abstract

Morphine-6-glucuronide (M6G) appears to show equivalent analgesia to morphine but to have a superior side-effect profile in terms of reduced liability to induce nausea and vomiting and respiratory depression. The purpose of this review is to examine the evidence behind this statement and to identify the possible reasons that may contribute to the profile of M6G. The vast majority of available data supports the notion that both M6G and morphine mediate their effects by activating the micro-opioid receptor. The differences for which there is a reasonable consensus in the literature can be summarized as: (1) Morphine has a slightly higher affinity for the micro-opioid receptor than M6G, (2) M6G shows a slightly higher efficacy at the micro-opioid receptor, (3) M6G has a lower affinity for the kappa-opioid receptor than morphine, and (4) M6G has a very different absorption, distribution, metabolism, and excretion (ADME) profile from morphine. However, none of these are adequate alone to explain the clinical differences between M6G and morphine. The ADME differences are perhaps most likely to explain some of the differences but seem unlikely to be the whole story. Further work is required to examine further the profile of M6G, notably whether M6G penetrates differentially to areas of the brain involved in pain and those involved in nausea, vomiting, and respiratory control or whether micro-opioid receptors in these brain areas differ in either their regulation or pharmacology.

PubMed Disclaimer

Similar articles

Cited by

MeSH terms

LinkOut - more resources