Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 1992 May;36(4):318-22.
doi: 10.1111/j.1399-6576.1992.tb03474.x.

Effect of alpha-chloralose, halothane, pentobarbital and nitrous oxide anesthesia on metabolic coupling in somatosensory cortex of rat

Affiliations
Comparative Study

Effect of alpha-chloralose, halothane, pentobarbital and nitrous oxide anesthesia on metabolic coupling in somatosensory cortex of rat

M Ueki et al. Acta Anaesthesiol Scand. 1992 May.

Abstract

The effect of various anesthetics on the functional-metabolic coupling of cerebral cortex was studied in rats submitted to unilateral somatosensory stimulation. The regional cerebral metabolic rate of glucose (CMRglc) was measured autoradiographically using the 2-deoxyglucose method, and somatosensory activation was carried out by electrical stimulation of the left forepaw. In animals treated with 70% nitrous oxide, 0.5% halothane/70% nitrous oxide or 40 mg/kg pentobarbital, CMRglc of somatosensory cortex did not change despite generation of primary evoked cortical potentials. Anesthesia with 80 mg/kg alpha-chloralose, in contrast, led to a focal increase of CMRglc in the primary somatosensory cortex from 52.1 +/- 18.3 to 73.1 +/- 18.9 mumol/100 g/min (means +/- s.d.). Metabolic activation was strictly confined to the forelimb (FL) area of somatosensory cortex, and it exhibited a laminar pattern with maximal activation in layers I, II and IV. The preservation of functional-metabolic coupling under a surgical dose of chloralose renders this anesthetic particularly suited for the investigation of coupling processes under conditions where the experimental requirements preclude the use of unanaesthetized animals.

PubMed Disclaimer

Publication types

LinkOut - more resources