Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2005 Jun 14:5:10.
doi: 10.1186/1471-2229-5-10.

Construction of a bacterial artificial chromosome library from the spikemoss Selaginella moellendorffii: a new resource for plant comparative genomics

Affiliations

Construction of a bacterial artificial chromosome library from the spikemoss Selaginella moellendorffii: a new resource for plant comparative genomics

Wenming Wang et al. BMC Plant Biol. .

Abstract

Background: The lycophytes are an ancient lineage of vascular plants that diverged from the seed plant lineage about 400 Myr ago. Although the lycophytes occupy an important phylogenetic position for understanding the evolution of plants and their genomes, no genomic resources exist for this group of plants.

Results: Here we describe the construction of a large-insert bacterial artificial chromosome (BAC) library from the lycophyte Selaginella moellendorffii. Based on cell flow cytometry, this species has the smallest genome size among the different lycophytes tested, including Huperzia lucidula, Diphaiastrum digita, Isoetes engelmanii and S. kraussiana. The arrayed BAC library consists of 9126 clones; the average insert size is estimated to be 122 kb. Inserts of chloroplast origin account for 2.3% of the clones. The BAC library contains an estimated ten genome-equivalents based on DNA hybridizations using five single-copy and two duplicated S. moellendorffii genes as probes.

Conclusion: The S. moellenforffii BAC library, the first to be constructed from a lycophyte, will be useful to the scientific community as a resource for comparative plant genomics and evolution.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Not I digests of BAC DNA isolated from 43 random BAC clones from the S. moellendorffii BAC library. The vector contains two Not I sites that flank the Hind III cloning sites. The vector is present in all samples with the exception of the first and last lanes, which contain the DNA marker PFG midrange I (New England Biolabs, Beverly, MA).
Figure 2
Figure 2
The distribution of BAC insert sizes from 410 randomly chosen BAC clones.
Figure 3
Figure 3
Results of DNA blots to determine the gene copy number of various DNA fragments in the S. moellendorffii genome. DNA from S. moellendorffii was digested with EcoR V, EcoR I, Nco I or Hind III and probed with the SmSNT fragment (panel A), the SmSHR fragment (panel B), the SmZNF fragment (panel C), the SmChlH fragment (panel D), the SmGAI fragment (panel E), the SmOTP cDNA (panel F), and the SmCYP98 cDNA (panel G). The EcoR V digest is absent in panel A. The left-most lanes in panels B, C and F contain molecular weight markers.

Similar articles

Cited by

References

    1. Kenrick P, Crane PR. The origin and early diversification of plants on land. Nature. 1997;389:33–39. doi: 10.1038/37918. - DOI
    1. Stewart W, Rothwell GW. Paleobotany and the Evolution of Plants. 2nd. Cambridge, Cambridge University Press; 1993.
    1. Pryer KM, Schneider H, Smith AR, Cranfill R, Wolf PG, Hunt JS, Sipes SD. Horsetails and ferns are a monophyletic group and the closest living relatives to seed plants. Nature. 2001;409:618–622. doi: 10.1038/35054555. - DOI - PubMed
    1. Arabdiopsis Genome Initiative Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature. 2000;408:796–815. doi: 10.1038/35048692. - DOI - PubMed
    1. Goff SA, Ricke D, Lan TH, Presting G, Wang R, Dunn M, Glazebrook J, Sessions A, Oeller P, Varma H, Hadley D, Hutchison D, Martin C, Katagiri F, Lange BM, Moughamer T, Xia Y, Budworth P, Zhong J, Miguel T, Paszkowski U, Zhang S, Colbert M, Sun WL, Chen L, Cooper B, Park S, Wood TC, Mao L, Quail P, Wing R, Dean R, Yu Y, Zharkikh A, Shen R, Sahasrabudhe S, Thomas A, Cannings R, Gutin A, Pruss D, Reid J, Tavtigian S, Mitchell J, Eldredge G, Scholl T, Miller RM, Bhatnagar S, Adey N, Rubano T, Tusneem N, Robinson R, Feldhaus J, Macalma T, Oliphant A, Briggs S. A draft sequence of the rice genome (Oryza sativa L. ssp. japonica) Science. 2002;296:92–100. doi: 10.1126/science.1068275. - DOI - PubMed

Publication types

LinkOut - more resources