Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2005 Sep 1;13(17):5043-54.
doi: 10.1016/j.bmc.2005.04.084.

Recent advances in tumor-targeting anticancer drug conjugates

Affiliations
Review

Recent advances in tumor-targeting anticancer drug conjugates

Stanislav Jaracz et al. Bioorg Med Chem. .

Abstract

Traditional cancer chemotherapy relies on the premise that rapidly proliferating cancer cells are more likely to be a killed by cytotoxic agent. In reality, however, cytotoxic agents have very little or no specificity, which leads to systemic toxicity, causing severe undesirable side effects. Therefore, various drug delivery protocols and systems have been explored in the last three decades. Tumor cells overexpress many receptors and biomarkers, which can be used as targets to deliver cytotoxic agents into tumors. In general, a tumor-targeting drug delivery system consists of a tumor recognition moiety and a cytotoxic warhead connected directly or through a suitable linker to form a conjugate. The conjugate, which can be regarded as 'prodrug', should be systemically non-toxic. This means that the linker must be stable in circulation. Upon internalization into the cancer cell the conjugate should be readily cleaved to regenerate the active cytotoxic agent. Tumor-targeting conjugates bearing cytotoxic agents can be classified into several groups based on the type of cancer recognition moieties. This review describes recent advances in tumor-targeting drug conjugates including monoclonal antibodies, polyunsaturated fatty acids, folic acid, hyaluronic acid, and oligopeptides as tumor-targeting moieties.

PubMed Disclaimer

MeSH terms

LinkOut - more resources