Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2005 Sep;63(3):343-51.
doi: 10.1016/j.apradiso.2005.04.005.

A new method for radiochemical separation of arsenic from irradiated germanium oxide

Affiliations

A new method for radiochemical separation of arsenic from irradiated germanium oxide

M Jennewein et al. Appl Radiat Isot. 2005 Sep.

Abstract

Radioarsenic labelled radiopharmaceuticals could be a valuable asset to Positron Emission Tomography (PET). In particular, the long half-lives of (72)As (T(1/2)=26 h) and (74)As (T(1/2)=17.8 d) allow to investigate slow physiological or metabolical processes, like the enrichment and distribution of antibodies in tumor tissue. This work describes the direct production of no-carrier-added (nca) arsenic isotopes *As, with *=71, 72, 73, 74 or 77, the reaction to [*As]AsI(3) and its radiochemical separation from the irradiated solid germanium oxide via polystyrene-based solid-phase extraction. The germanium oxide target, irradiated at a cyclotron or a nuclear reactor, is dissolved in concentrated HF and Ge is separated almost quantitatively (99.97%) as [GeF(6)](2-). [*As]AsI(3) is formed by addition of potassium iodide. The radiochemical separation yield for arsenic is >90%. [*As]AsI(3) is a versatile radioarsenic labelling synthon.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources