Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2005 Jul;88(7):2537-55.
doi: 10.3168/jds.S0022-0302(05)72931-3.

Varying protein and starch in the diet of dairy cows. I. Effects on ruminal fermentation and intestinal supply of nutrients

Affiliations
Free article

Varying protein and starch in the diet of dairy cows. I. Effects on ruminal fermentation and intestinal supply of nutrients

I R Ipharraguerre et al. J Dairy Sci. 2005 Jul.
Free article

Abstract

The main objective of this experiment was to examine the effects of the percentage and source of crude protein (CP) and the amount of starch in the diet of dairy cows on ruminal fermentation, nutrient passage to the small intestine, and nutrient digestibility. For this purpose, 6 multiparous Holstein cows fistulated in the rumen and duodenum that averaged 73 d in milk were used in a 6 x 6 Latin square design with a 2 x 3 factorial arrangement of treatments. Two sources of CP [solvent-extracted soybean meal (SBM) and a mixture of SBM and a blend of animal-marine protein supplements plus ruminally protected Met (AMB)] and 3 levels of dietary protein (about 14, 16, and 18%) were combined into 6 treatments. On a dry matter (DM) basis, diets contained 25% corn silage, 20% alfalfa silage, 10% cottonseed, 26.7 to 37% corn grain, and 4 to 13.5% protein supplement. Intakes and digestibilities in the rumen and total tract of DM, organic matter, acid and neutral detergent fiber were unaffected by treatments. Increasing dietary CP from 14 to 18% decreased the intake and apparent ruminal and total tract digestion of starch, but increased the proportion of starch consumed by the cows that was apparently digested in the small intestine. At 14% CP, starch intake and total tract digestion were higher for the AMB diet than for the SBM diet, but the opposite occurred at 16% CP. Across CP sources, increasing CP in the diet from 14 to 18% increased the intakes of N and amino acids (AA), and ruminal outflows of nonammonia N, nonammonia nonmicrobial N, each individual AA except Met, total essential AA, and total AA. Across CP percentages, replacing a portion of SBM with AMB increased the intake of Met and Val and decreased the concentration of ammonia N in the rumen, but did not affect the intake of other essential AA or the intestinal supply of any essential AA and starch. The ruminal outflow of microbial N, the proportional contribution of Lys and Met to total AA delivered to the duodenum, and milk yield were unaffected by treatments. Data suggest that the intake of N by high-producing dairy cows that consume sufficient energy and other nutrients to meet their requirements can be decreased to about 600 to 650 g daily without compromising the supply of metabolizable protein if the source and amount of dietary CP and carbohydrate are properly matched.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources