Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2005 May:1041:423-30.
doi: 10.1196/annals.1282.063.

Basic progress and future therapeutic perspectives of relaxin in ischemic heart disease

Affiliations
Review

Basic progress and future therapeutic perspectives of relaxin in ischemic heart disease

Daniele Bani et al. Ann N Y Acad Sci. 2005 May.

Abstract

Relaxin has been validated as a cardiotropic hormone, being produced by the heart and acting on specific heart receptors. Evidence is accumulating that it could hamper the pathophysiologic mechanisms of ischemic heart disease. Time is ripe to study relaxin as a cardiotropic drug, as recombinant human relaxin (hrRLX) is now available and previous clinical trials have shown a virtual lack of toxicity and adverse side effects, even at high doses. Our recent observations suggest that relaxin, besides being a preventative agent, may also be effective in the treatment of acute myocardial infarction and may be an adjuvant for precursor cell grafting to repair postinfarct myocardium. In a swine model of myocardial infarction currently used to test cardiotropic drugs due to its similarities with human ischemic heart disease, hrRLX, given at reperfusion upon 30 min of ischemia, markedly reduced serum and tissue markers of myocardial injury, cardiomyocyte apoptosis and leukocyte recruitment, resulting in overall improvement in cardiac performance compared with the controls. In in vitro mixed cultures of mouse skeletal myoblasts and adult rat cardiomyocytes, relaxin increased gap junction formation and potentiated gap junction-mediated intercellular exchanges and signaling between the coupled cells. In view of the therapeutic use of myoblast grafting for cardiac repair, relaxin could hence favor the electromechanical coupling of grafted myoblasts with the resident cardiomyocytes and facilitate their transdifferentiation towards a cardiac phenotype. Relaxin, therefore, shows promising therapeutic potential in cardiology and cardiac surgery.

PubMed Disclaimer

LinkOut - more resources