Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2005 Aug;94(5-6):711-7.
doi: 10.1007/s00421-004-1287-y. Epub 2005 Jun 15.

Comparison between maximal power in the power-endurance relationship and maximal instantaneous power

Affiliations

Comparison between maximal power in the power-endurance relationship and maximal instantaneous power

Michel Chatagnon et al. Eur J Appl Physiol. 2005 Aug.

Abstract

The purpose of this study was to analyze the relevance of introducing the maximal power (P(m)) into a critical-power model. The aims were to compare the P(m) with the instantaneous maximal power (P(max)) and to determine how the P(m) affected other model parameters: the critical power ( P(c)) and a constant amount of work performed over P(c)(W'). Twelve subjects [22.9 (1.6) years, 179 (7) cm, 74.1 (8.9) kg, 49.4 (3.6) ml/min/kg] completed one 15 W/min ramp test to assess their ventilatory threshold (VT), five or six constant-power to exhaustion tests with one to measure the maximal accumulated oxygen deficit (MAOD), and six 5-s all-out friction-loaded tests to measure P(max) at 75 rpm, which was the pedaling frequency during tests. The power and time to exhaustion values were fitted to a 2-parameter hyperbolic model (NLin-2), a 3-parameter hyperbolic model (NLin-3) and a 3-parameter exponential model (EXP). The P(m) values from NLin-3 [760 (702) W] and EXP [431 (106) W] were not significantly correlated with the P(max) at 75 rpm [876 (82) W]. The P(c) value estimated from NLin-3 [186 (47) W] was not significantly correlated with the power at VT [225 (32) W], contrary to other models ( P <0.001). The W' from NLin-2 [25.7 (5.7) kJ] was greater than the MAOD [14.3 (2.7) kJ, P < 0.001] with a significant correlation between them (R = 0.76, P <0.01). For NLin-3, computation of W (P > P c), the amount of work done over P(C), yielded results similar to the W' value from NLin-2: 27.8 (7.4) kJ, which correlated significantly with the MAOD (R = 0.72, P <0.01). In conclusion, the P(m) was not related to the maximal instantaneous power and did not improve the correlations between other model parameters and physiological variables.

PubMed Disclaimer

References

    1. Sports Med. 1993 Oct;16(4):237-54 - PubMed
    1. Ergonomics. 1988 Oct;31(10):1413-9 - PubMed
    1. Eur J Appl Physiol Occup Physiol. 1996;74(1-2):100-6 - PubMed
    1. Eur J Appl Physiol Occup Physiol. 1989;58(4):375-81 - PubMed
    1. Med Sci Sports Exerc. 1998 Jan;30(1):47-52 - PubMed

LinkOut - more resources