Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2005 Jun 24;70(13):5144-9.
doi: 10.1021/jo0503916.

Electron-transfer mechanism in the N-demethylation of N,N-dimethylanilines by the phthalimide-N-oxyl radical

Affiliations

Electron-transfer mechanism in the N-demethylation of N,N-dimethylanilines by the phthalimide-N-oxyl radical

Enrico Baciocchi et al. J Org Chem. .

Abstract

The reactivity of the phthalimide N-oxyl radical (PINO) toward the N-methyl C-H bond of a number of 4-X-substituted N,N-dimethylanilines (X = OMe, OPh, CF(3), CO(2)Et, CN) has been investigated by product and kinetic analysis. PINO was generated in CH(3)CN by reaction of N-hydroxyphthalimide (NHPI) with Pb(OAc)(4) or, for the kinetic study of the most reactive substrates (X = OMe, OPh), with tert-butoxyl radical produced by 266 nm laser flash photolysis of di-tert-butyl peroxide. The reaction was found to lead to the N-demethylation of the N,N-dimethylaniline with a rate very sensitive to the electron donating power of the substituent (rho(+) = -2.5) as well as to the oxidation potential of the substrates. With appropriately deuterated N,N-dimethylanilines the intermolecular and intramolecular deuterium kinetic isotope effects (DKIEs) were measured for some substrates (X = OMe, CO(2)Et, CN) with the following results. First, intramolecular DKIE [(k(H)/k(D))(intra)] was found to be always different and higher than intermolecular DKIE [(k(H)/k(D))(inter)]; second, no intermolecular DKIE [(k(H)/k(D))(inter) = 1] was observed for X = OMe, whereas substantial values of (k(H)/k(D))(inter) were exhibited by X = CO(2)Et (4.8) and X = CN (5.8). These results, while are incompatible with a single step hydrogen atom transfer from the N-C-H bond to the N-oxyl radical, as proposed for the reaction of PINO with benzylic C-H bonds, can be nicely interpreted on the basis of a two-step mechanism involving a reversible electron transfer from the aniline to PINO leading to an anilinium radical cation, followed by a proton-transfer step that produces an alpha-amino carbon radical. In line with this conclusion the reactivity data exhibited a good fit with the Marcus equation and a lambda value of 37.6 kcal mol(-1) was calculated for the reorganization energy required in this electron-transfer process. From this value, a quite high reorganization energy (>60 kcal mol(-1)) is estimated for the PINO/NHPI(-H)(-) self-exchange reaction. It is suggested that the N-demethylated product derives from the reaction of the alpha-amino carbon radical with PINO to form either a cross-coupling product or an alpha-amino carbocation. Both species may react with the small amounts of H(2)O present in the medium to form a carbinolamine that, again by hydrolysis, can be eventually converted into the N-demethylated product.

PubMed Disclaimer

LinkOut - more resources