Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2006 Feb;27(2):306-17.
doi: 10.1016/j.neurobiolaging.2005.01.019. Epub 2005 Jun 14.

Prevention of age-related dysregulation of calcium dynamics by estrogen in neurons

Affiliations
Comparative Study

Prevention of age-related dysregulation of calcium dynamics by estrogen in neurons

Gregory J Brewer et al. Neurobiol Aging. 2006 Feb.

Abstract

To determine the impact of aging and 17beta-estradiol on neuronal Ca2+ homeostasis, intracellular Fura-2 Ca2+-imaging was conducted during 20-pulses of glutamate in hippocampal neurons cultured from embryonic (E18), middle-age (10 months) and old (24 months) rat brain. Marked age-related differences in intracellular Ca2+ ([Ca2+]i) homeostasis and striking regulation by 17beta-estradiol were seen. Embryonic neurons exhibited the greatest capacity to regulate Ca2+ homeostasis followed by middle-age neurons. In old neurons, the first peak [Ca2+]i was substantially greater than at other ages and the return to baseline Ca2+ rapidly dysregulated with an inability to restore [Ca2+]i following the first glutamate pulse which persisted throughout the 20 pulses. 17beta-Estradiol pretreatment of old neurons profoundly attenuated the peak [Ca2+]i rise and delayed the age-associated dysregulation of baseline [Ca2+]i, normalizing responses to those of middle-age neurons treated with estradiol. The efficacy of 17beta-estradiol extended below 10 pg/ml with full protection against toxicity from glutamate and Abeta (1-40). These results demonstrate age-associated dysregulation of [Ca2+]i homeostasis which was largely prevented by 17beta-estradiol with implications for estrogen/hormone therapy.

PubMed Disclaimer

Publication types

LinkOut - more resources