Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2005 Jul 1;118(Pt 13):2803-12.
doi: 10.1242/jcs.02423. Epub 2005 Jun 16.

Identification of the cyclic-nucleotide-binding domain as a conserved determinant of ion-channel cell-surface localization

Affiliations

Identification of the cyclic-nucleotide-binding domain as a conserved determinant of ion-channel cell-surface localization

Armin Akhavan et al. J Cell Sci. .

Abstract

Mutations of a putative cyclic-nucleotide-binding domain (CNBD) can disrupt the function of the hyperpolarization-activated cyclic-nucleotide-gated channel (HCN2) and the human ether-a-go-go-related gene potassium channel (HERG). Loss of function caused by C-terminal truncation, which includes all or part of the CNBD in HCN and HERG, has been related to abnormal channel trafficking. Similar defects have been reported for several of the missense mutations of HERG associated with long QT syndrome type 2 (LQT2). Thus, we postulate that normal processing of these channels depends upon the presence of the CNBD. Here, we show that removal of the entire CNBD prevents Golgi transit, surface localization and function of HERG channel tetramers. This is also true when any of the structural motifs of the CNBD is deleted, suggesting that deletion of any highly conserved region along the entire length of the CNBD can disrupt channel trafficking. Furthermore, we demonstrate that defective trafficking is a consequence of all LQT2 mutations in the CNBD, including two mutations not previously assessed and two others for which there are conflicting results in the literature. The trafficking sensitivity of the CNBD might be of general significance for other ion channels because complete deletion of the CNBD or mutations at highly conserved residues within the CNBD of the related ERG3 channel and HCN2 also prevent Golgi transit. These results broadly implicate the CNBD in ion-channel trafficking that accounts for the commonly observed loss of function associated with CNBD mutants and provides a rationale for distinct genetic disorders.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources