Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2005 Jun:21 Suppl 1:i97-106.
doi: 10.1093/bioinformatics/bti1027.

Maximum likelihood of evolutionary trees: hardness and approximation

Affiliations

Maximum likelihood of evolutionary trees: hardness and approximation

Benny Chor et al. Bioinformatics. 2005 Jun.

Abstract

Motivation: Maximum likelihood (ML) is an increasingly popular optimality criterion for selecting evolutionary trees. Yet the computational complexity of ML was open for over 20 years, and only recently resolved by the authors for the Jukes-Cantor model of substitution and its generalizations. It was proved that reconstructing the ML tree is computationally intractable (NP-hard). In this work we explore three directions, which extend that result.

Results: (1) We show that ML under the assumption of molecular clock is still computationally intractable (NP-hard). (2) We show that not only is it computationally intractable to find the exact ML tree, even approximating the logarithm of the ML for any multiplicative factor smaller than 1.00175 is computationally intractable. (3) We develop an algorithm for approximating log-likelihood under the condition that the input sequences are sparse. It employs any approximation algorithm for parsimony, and asymptotically achieves the same approximation ratio. We note that ML reconstruction for sparse inputs is still hard under this condition, and furthermore many real datasets satisfy it.

PubMed Disclaimer

Publication types

LinkOut - more resources