Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1992 Jan;37(1):15-21.
doi: 10.1016/0003-9969(92)90147-z.

Effects of non-collagenous proteins on the formation of apatite in calcium beta-glycerophosphate solutions

Affiliations

Effects of non-collagenous proteins on the formation of apatite in calcium beta-glycerophosphate solutions

Y Doi et al. Arch Oral Biol. 1992 Jan.

Abstract

The effects of the non-collagenous proteins; osteonectin, bone Gla protein and dentine phosphoprotein, on the formation of apatite were studied in calcium beta-glycerophosphate solutions containing catalytic amounts of alkaline phosphatase under physiological conditions. In the system used, calcium phosphate precipitates de novo at levels of supersaturation precisely determined through the enzymatic hydrolysis of beta-glycerophosphate. At 1.7 mM of calcium beta-glycerophosphate, calcium phosphate precipitated when inorganic phosphate accumulated to about 1.4 mM. In the presence of the proteins, however, a greater accumulation of inorganic phosphate was needed for calcium phosphate to precipitate, suggesting that a higher degree of supersaturation, though still a slight undersaturation with respect to dicalcium phosphate dihydrate, is required for calcium phosphate to precipitate in the presence of the proteins. At the same protein (micrograms/ml) concentration, dentine phosphoprotein was approximately four times as effective as bone Gla protein, which was about twice as effective as osteonectin in delaying precipitation. The proteins also retarded subsequent crystal growth, with apatite formed in the presence of the more inhibitory proteins having the smallest crystals, especially in width.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources