In silico design and adaptive evolution of Escherichia coli for production of lactic acid
- PMID: 15962337
- DOI: 10.1002/bit.20542
In silico design and adaptive evolution of Escherichia coli for production of lactic acid
Abstract
The development and validation of new methods to help direct rational strain design for metabolite overproduction remains an important problem in metabolic engineering. Here we show that computationally predicted E. coli strain designs, calculated from a genome-scale metabolic model, can lead to successful production strains and that adaptive evolution of the engineered strains can lead to improved production capabilities. Three strain designs for lactate production were implemented yielding a total of 11 evolved production strains that were used to demonstrate the utility of this integrated approach. Strains grown on 2 g/L glucose at 37 degrees C showed lactate titers ranging from 0.87 to 1.75 g/L and secretion rates that were directly coupled to growth rates.
Copyright 2005 Wiley Periodicals, Inc
Similar articles
-
Metabolic analysis of adaptive evolution for in silico-designed lactate-producing strains.Biotechnol Bioeng. 2006 Dec 5;95(5):992-1002. doi: 10.1002/bit.21073. Biotechnol Bioeng. 2006. PMID: 16807925
-
Strain improvement and metabolic flux analysis in the wild-type and a mutant Lactobacillus lactis strain for L(+)-lactic acid production.Biotechnol Bioeng. 2004 Dec 20;88(6):681-9. doi: 10.1002/bit.20274. Biotechnol Bioeng. 2004. PMID: 15532044
-
Genome-scale in silico aided metabolic analysis and flux comparisons of Escherichia coli to improve succinate production.Appl Microbiol Biotechnol. 2006 Dec;73(4):887-94. doi: 10.1007/s00253-006-0535-y. Epub 2006 Aug 23. Appl Microbiol Biotechnol. 2006. PMID: 16927085
-
Fermentation of 10% (w/v) sugar to D: (-)-lactate by engineered Escherichia coli B.Biotechnol Lett. 2005 Dec;27(23-24):1891-6. doi: 10.1007/s10529-005-3899-7. Biotechnol Lett. 2005. PMID: 16328986
-
Recent advances in the metabolic engineering of microorganisms for the production of 3-hydroxypropionic acid as C3 platform chemical.Appl Microbiol Biotechnol. 2013 Apr;97(8):3309-21. doi: 10.1007/s00253-013-4802-4. Epub 2013 Mar 14. Appl Microbiol Biotechnol. 2013. PMID: 23494623 Review.
Cited by
-
Recent progress in adaptive laboratory evolution of industrial microorganisms.J Ind Microbiol Biotechnol. 2023 Feb 17;50(1):kuac023. doi: 10.1093/jimb/kuac023. J Ind Microbiol Biotechnol. 2023. PMID: 36323428 Free PMC article.
-
Genome-scale metabolic rewiring improves titers rates and yields of the non-native product indigoidine at scale.Nat Commun. 2020 Oct 23;11(1):5385. doi: 10.1038/s41467-020-19171-4. Nat Commun. 2020. PMID: 33097726 Free PMC article.
-
Global reconstruction of the human metabolic network based on genomic and bibliomic data.Proc Natl Acad Sci U S A. 2007 Feb 6;104(6):1777-82. doi: 10.1073/pnas.0610772104. Epub 2007 Jan 31. Proc Natl Acad Sci U S A. 2007. PMID: 17267599 Free PMC article.
-
FastPros: screening of reaction knockout strategies for metabolic engineering.Bioinformatics. 2014 Apr 1;30(7):981-7. doi: 10.1093/bioinformatics/btt672. Epub 2013 Nov 19. Bioinformatics. 2014. PMID: 24257186 Free PMC article.
-
Minimal Escherichia coli cell for the most efficient production of ethanol from hexoses and pentoses.Appl Environ Microbiol. 2008 Jun;74(12):3634-43. doi: 10.1128/AEM.02708-07. Epub 2008 Apr 18. Appl Environ Microbiol. 2008. PMID: 18424547 Free PMC article.
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources