Host innate and Th1 responses and the bacterial factors that control Mycobacterium tuberculosis infection
- PMID: 15963709
- DOI: 10.1016/j.coi.2005.06.006
Host innate and Th1 responses and the bacterial factors that control Mycobacterium tuberculosis infection
Abstract
It is clear that resistance against acute tuberculosis (TB) is dependent on the host's ability to generate Th1 immunity. Nevertheless, the role of host immunity in latent TB remains incompletely defined. Recent progress in elucidating host innate and adaptive immune responses to M. tuberculosis (Mtb) and their impact on latent infection includes identification of TLR2-dependent anti-inflammatory responses, a MyD88-independent, non-protective Th1 response, the formation of secondary lymphoid follicles in granulomas and the role of Th1 responses, IFN-gamma and TNF-alpha in preventing re-activation of infection; IFN-gamma also appears to be involved in activating latency genes in Mtb. When Mtb re-infects a patient, it appears to localize in established granulomas; however, different bacterial strains may behave differently. Although these advances do not provide all the answers regarding host defense mechanisms, they nevertheless bring us closer to new and better design strategies for immunotherapy and immunoprophylaxis.
Similar articles
-
[Frontier of mycobacterium research--host vs. mycobacterium].Kekkaku. 2005 Sep;80(9):613-29. Kekkaku. 2005. PMID: 16245793 Japanese.
-
[Protective immunity against Mycobacterium tuberculosis].Kekkaku. 2006 Nov;81(11):687-91. Kekkaku. 2006. PMID: 17154048 Review. Japanese.
-
MyDths and un-TOLLed truths: sensor, instructive and effector immunity to tuberculosis.Immunol Lett. 2008 Feb 15;116(1):15-23. doi: 10.1016/j.imlet.2007.11.015. Epub 2007 Dec 26. Immunol Lett. 2008. PMID: 18191460 Review.
-
[Evolution of IGRA researches].Kekkaku. 2008 Sep;83(9):641-52. Kekkaku. 2008. PMID: 18979999 Review. Japanese.
-
[Development of antituberculous drugs: current status and future prospects].Kekkaku. 2006 Dec;81(12):753-74. Kekkaku. 2006. PMID: 17240921 Review. Japanese.
Cited by
-
Identification of Mycobacterium tuberculosis-specific Th1, Th17 and Th22 cells using the expression of CD40L in tuberculous pleurisy.PLoS One. 2011;6(5):e20165. doi: 10.1371/journal.pone.0020165. Epub 2011 May 18. PLoS One. 2011. PMID: 21625607 Free PMC article.
-
Multifaceted Impact of Host C-C Chemokine CCL2 in the Immuno-Pathogenesis of HIV-1/M. tuberculosis Co-Infection.Front Immunol. 2013 Oct 4;4:312. doi: 10.3389/fimmu.2013.00312. Front Immunol. 2013. PMID: 24109479 Free PMC article. Review.
-
Exploiting Pre-Existing CD4+ T Cell Help from Bacille Calmette-Guérin Vaccination to Improve Antiviral Antibody Responses.J Immunol. 2020 Jul 15;205(2):425-437. doi: 10.4049/jimmunol.2000191. Epub 2020 Jun 8. J Immunol. 2020. PMID: 32513849 Free PMC article.
-
NR1D1 ameliorates Mycobacterium tuberculosis clearance through regulation of autophagy.Autophagy. 2015 Nov 2;11(11):1987-1997. doi: 10.1080/15548627.2015.1091140. Autophagy. 2015. PMID: 26390081 Free PMC article.
-
Mycobacterium indicus pranii induces dendritic cell activation, survival, and Th1/Th17 polarization potential in a TLR-dependent manner.J Leukoc Biol. 2015 Mar;97(3):511-20. doi: 10.1189/jlb.1A0714-361R. Epub 2015 Jan 15. J Leukoc Biol. 2015. PMID: 25593326 Free PMC article.
Publication types
MeSH terms
Grants and funding
LinkOut - more resources
Full Text Sources
Medical