Is the sarcolemmal or mitochondrial K(ATP) channel activation important in the antiarrhythmic and cardioprotective effects during acute ischemia/reperfusion in the intact anesthetized rabbit model?
- PMID: 15964023
- DOI: 10.1016/j.lfs.2004.12.042
Is the sarcolemmal or mitochondrial K(ATP) channel activation important in the antiarrhythmic and cardioprotective effects during acute ischemia/reperfusion in the intact anesthetized rabbit model?
Abstract
The relative contributions of cardiomyocyte sarcolemmal ATP-sensitive K(+) (K(ATP)) and mitochondrial K(ATP) channels in the cardioprotection and antiarrhythmic activity induced by K(ATP) channel openers remain obscure, though the mitochondrial K(ATP) channels have been proposed to be involved as a subcellular mediator in cardioprotection afforded by ischemic preconditioning. In the present study, we sought to investigate the effects of administration of ATP-sensitive K(+) channel (K(ATP)) openers (nicorandil and minoxidil), a specific mitochondrial K(ATP) channel blocker (5-hydroxydecanoate (5-HD)) and a specific sarcolemmal K(ATP) channel blocker (HMR 1883; (1-[5-[2-(5-chloro-o-anisamido)ethyl]-2-methoxyphenyl]sulfonyl-3-methylthiourea) prior to coronary occlusion as well as prior to post-ischemic reperfusion on survival rate, ischemia-induced and reperfusion-induced arrhythmias and myocardial infarct size in anesthetized albino rabbits. The thorax was opened in the left 4th intercostal space and after pericardiotomy the heart was exposed. In Group I (n=88), occlusion of the left main coronary artery and hence, myocardial ischemia-induced arrhythmias was achieved by tightening a previously placed loose silk ligature for 30 min. In Group II (n=206), arrhythmias were induced by reperfusion following a 20-min ligation of the left main coronary artery. Both in Group I and Group II, intravenous (i.v.) administration of nicorandil (0.47 mg/kg), minoxidil (0.5 mg/kg), HMR 1883 (3 mg/kg)/nicorandil and HMR 1883 (3 mg/kg)/minoxidil before coronary artery occlusion increased survival rate (86%, 75%, 75% and 86% vs. 55% in the control subgroup in Group I; 75%, 67%, 67% and 75% vs. 46% in the control subgroup in Group II), significantly decreased the incidence and severity of life-threatening arrhythmias. In Group II, i.v. administration of nicorandil and minoxidil before coronary artery occlusion significantly decreased myocardial infarct size. However, i.v. administration of nicorandil or minoxidil before reperfusion did neither increase survival rate nor confer any antiarrhythmic or cardioprotective effects. The antiarrhythmic and cardioprotective effects of both nicorandil and minoxidil were abolished by pretreating the rabbits with 5-HD (5 mg/kg, i.v. bolus), a selective mitochondrial K(ATP) channel blocker but not by HMR 1883 (3 mg/kg). In the present study, higher levels of malondialdehyde (MDA) and lower levels of reduced glutathione (GSH) and superoxide dismutase (SOD) in necrotic zone of myocardium in all the 16 subgroups in Group II suggest little anti-free radical property of nicorandil and minoxidil. We conclude that intervention by intravenous administration of nicorandil and minoxidil (through the selective activation of mitochondrial K(ATP) channels) increased survival rate and exhibited antiarrhythmic and cardioprotective effects during coronary occlusion and reperfusion in anesthetized rabbits when administered prior to coronary occlusion. The cardiomyocyte mitochondrial K(ATP) channel may be a pharmacologically modulable target of cardioprotection and antiarrhythmic activity.
Similar articles
-
Selective mitochondrial KATP channel activation by nicorandil and 3-pyridyl pinacidil results in antiarrhythmic effect in an anesthetized rabbit model of myocardial ischemia/reperfusion.Methods Find Exp Clin Pharmacol. 2003 Mar;25(2):97-110. doi: 10.1358/mf.2003.25.2.723683. Methods Find Exp Clin Pharmacol. 2003. PMID: 12731455
-
Mitochondrial K ATP channel activation is important in the antiarrhythmic and cardioprotective effects of non-hypotensive doses of nicorandil and cromakalim during ischemia/reperfusion: a study in an intact anesthetized rabbit model.Pharmacol Res. 2003 Jun;47(6):447-61. doi: 10.1016/s1043-6618(02)00335-3. Pharmacol Res. 2003. PMID: 12741997
-
Cardiomyocyte mitochondrial KATP channels participate in the antiarrhythmic and antiinfarct effects of KATP activators during ischemia and reperfusion in an intact anesthetized rabbit model.Pol J Pharmacol. 2003 Sep-Oct;55(5):771-86. Pol J Pharmacol. 2003. PMID: 14704474
-
ATP-sensitive K+ channel openers: old drugs with new clinical benefits for the heart.Curr Vasc Pharmacol. 2003 Oct;1(3):251-8. doi: 10.2174/1570161033476646. Curr Vasc Pharmacol. 2003. PMID: 15320472 Review.
-
Pharmacology of ATP-sensitive potassium channel (KATP) openers in models of myocardial ischemia and reperfusion.Can J Physiol Pharmacol. 1997 Apr;75(4):309-15. doi: 10.1139/cjpp-75-4-309. Can J Physiol Pharmacol. 1997. PMID: 9196857 Review.
Cited by
-
Mitochondria and arrhythmias.Free Radic Biol Med. 2014 Jun;71:351-361. doi: 10.1016/j.freeradbiomed.2014.03.033. Epub 2014 Apr 5. Free Radic Biol Med. 2014. PMID: 24713422 Free PMC article. Review.
-
Mitochondria are sources of metabolic sink and arrhythmias.Pharmacol Ther. 2011 Sep;131(3):287-94. doi: 10.1016/j.pharmthera.2011.04.005. Epub 2011 Apr 14. Pharmacol Ther. 2011. PMID: 21513732 Free PMC article. Review.
-
Cardiac mitochondria and arrhythmias.Cardiovasc Res. 2010 Nov 1;88(2):241-9. doi: 10.1093/cvr/cvq231. Epub 2010 Jul 9. Cardiovasc Res. 2010. PMID: 20621924 Free PMC article. Review.
-
ArrhythmoGenoPharmacoTherapy.Front Pharmacol. 2020 May 12;11:616. doi: 10.3389/fphar.2020.00616. eCollection 2020. Front Pharmacol. 2020. PMID: 32477118 Free PMC article. Review.
-
Mitochondrial ion channels in cardiac function.Am J Physiol Cell Physiol. 2021 Nov 1;321(5):C812-C825. doi: 10.1152/ajpcell.00246.2021. Epub 2021 Sep 22. Am J Physiol Cell Physiol. 2021. PMID: 34550794 Free PMC article. Review.
MeSH terms
Substances
LinkOut - more resources
Full Text Sources