Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2005;133(4):1007-19.
doi: 10.1016/j.neuroscience.2005.03.041.

Inhibition of the cloned delayed rectifier K+ channels, Kv1.5 and Kv3.1, by riluzole

Affiliations
Comparative Study

Inhibition of the cloned delayed rectifier K+ channels, Kv1.5 and Kv3.1, by riluzole

H S Ahn et al. Neuroscience. 2005.

Abstract

The action of riluzole, a neuroprotective drug, on cloned delayed rectifier K+ channels (Kv1.5 and Kv3.1) was examined using the whole-cell patch-clamp technique. Riluzole reversibly inhibited Kv1.5 currents in a concentration-dependent manner with an IC50 of 39.69+/-2.37 microM. G-protein inhibitors (pertussis toxin and GDPbetaS) did not prevent this inhibition of riluzole on Kv1.5. No voltage-dependent inhibition by riluzole was found over the voltage range in which channels are fully activated. Riluzole shifted the steady-state inactivation curves of Kv1.5 in a hyperpolarizing direction in a concentration-dependent manner. It accelerated the deactivation kinetics of Kv1.5 in a concentration dependent-manner, but had no effect on the steady-state activation curve. Riluzole exhibited a use-independent inhibition of Kv1.5. The effects of riluzole on Kv3.1, the Shaw-type K+ channel were also examined. Riluzole caused a concentration-dependent inhibition of Kv3.1 currents with an IC50 of 120.98+/-9.74 microM and also shifted the steady-state inactivation curve of Kv3.1 in the hyperpolarizing direction. Thus, riluzole inhibits both Kv1.5 and Kv3.1 currents in a concentration-dependent manner and interacts directly with Kv1.5 by preferentially binding to the inactivated and to the closed states of the channel.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources