Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2005 Dec;26(34):7183-91.
doi: 10.1016/j.biomaterials.2005.05.020.

Aqueous dispersions of magnetite nanoparticles with NH3+ surfaces for magnetic manipulations of biomolecules and MRI contrast agents

Affiliations

Aqueous dispersions of magnetite nanoparticles with NH3+ surfaces for magnetic manipulations of biomolecules and MRI contrast agents

Dar-Bin Shieh et al. Biomaterials. 2005 Dec.

Abstract

In the current study, amine surface modified iron-oxide nanoparticles of 6 nm diameter without polymer coating were fabricated in an aqueous solution by organic acid modification as an adherent following chemical coprecipitation. Structure and the superparamagnetic property of magnetite nanoparticles were characterized by selected area electron diffraction (SAED) and superconducting quantum interference measurement device (SQUID). X-ray photoelectron spectrometer (XPS) and zeta potential measurements revealed cationic surface mostly decorated with terminal -NH(3)(+). This feature enables them to function as a magnetic carrier for nucleotides via electrostatic interaction. In addition, Fe(3)O(4)/trypsin conjugates with well-preserved functional activity was demonstrated. The nanoparticles displayed excellent in vitro biocompatibility. The NMR and the in vitro MRI measurements showed significantly reduced water proton relaxation times of both T(1) and T(2). Significantly reduced T(2) and T(2)*-weighted signal intensity were observed in a 1.5 T clinical MR imager. In vivo imaging contrast effect showed a fast and prolonged inverse contrast effect in the liver that lasted for more than 1 week. In addition, it was found that the spherical Fe(3)O(4) assembled as rod-like configuration through an aging process in aqueous solution at room temperature. Interestingly, TEM observation of the liver tissue revealed the rod-like shape but not the spherical-type nanoparticles being taken up by the Kupffer cells 120 h after tail vein infusion. Combining these results, we have demonstrated the potential applications of the newly synthesized magnetite nanoparticles in a broad spectrum of biomedical applications.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources