Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2005 Aug;29(4):603-16.
doi: 10.1016/j.mcn.2005.05.001.

Differential expression of individual gamma-protocadherins during mouse brain development

Affiliations

Differential expression of individual gamma-protocadherins during mouse brain development

Marcus Frank et al. Mol Cell Neurosci. 2005 Aug.

Abstract

Three tandemly arrayed protocadherin gene clusters (Pcdh-alpha, -beta, -gamma) comprising more than 50 genes are found in human and mouse. Here, we have investigated the expression and distribution of individual gamma-protocadherins (Pcdhs-gamma) in the developing mouse brain. We find that transfection of Pcdh-gamma genes promotes calcium-dependent cell adhesion in HEK 293 cells. Furthermore, Pcdh-gamma can be recruited to synapses of transfected primary hippocampal neurons. Several individual members of the in total 22 Pcdhs-gamma were chosen to examine the expression of the three subfamilies, Pcdh-gammaA, -gammaB, and -gammaC. These Pcdh-gamma transcripts are expressed all over the brain, with minor regional and cell-type specific differences. Interestingly, a distinct, later onset of expression is observed for Pcdh-gammaC5, a gene located at the end of the Pcdh-gamma cluster. Largely overlapping expression patterns of individual Pcdh-gamma proteins are detected with anti-peptide antibodies. Small differences are observed in the staining of dendritic processes and synapse-rich layers. Our results support the idea that Pcdhs-gamma participate in neuronal differentiation and may be implicated in the fine-tuning of neuronal morphology and synaptogenesis. Cell autonomous regulation of transcription might generate the widespread distribution of individual Pcdhs-gamma in the brain, which is strikingly different from the restricted expression patterns observed for classical cadherins. Thus, a defined set of Pcdhs-gamma may engage in neuronal adhesion and signaling on the cellular level.

PubMed Disclaimer

Publication types

MeSH terms