Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2005 Oct;60(10):834-41.
doi: 10.1136/thx.2004.037531. Epub 2005 Jun 17.

Hypoxaemia enhances peripheral muscle oxidative stress in chronic obstructive pulmonary disease

Affiliations

Hypoxaemia enhances peripheral muscle oxidative stress in chronic obstructive pulmonary disease

C Koechlin et al. Thorax. 2005 Oct.

Abstract

Background: Because oxidative stress affects muscle function, the underlying mechanism to explain exercise induced peripheral muscle oxidative stress in patients with chronic obstructive pulmonary disease (COPD) is clinically relevant. This study investigated whether chronic hypoxaemia in COPD worsens peripheral muscle oxidative stress and whether an abnormal muscle inflammatory process is associated with it.

Methods: Nine chronically hypoxaemic and nine non-hypoxaemic patients performed repeated knee extensions until exhaustion. Biopsy specimens were taken from the vastus lateralis muscle before and 48 hours after exercise. Muscle oxidative stress was evaluated by lipid peroxidation (lipofuscin and thiobarbituric acid reactive substances (TBARs)) and oxidised proteins. Inflammation was evaluated by quantifying muscle neutrophil and tumour necrosis factor (TNF)-alpha levels.

Results: When both groups were taken together, arterial oxygen pressure was positively correlated with quadriceps endurance time (n = 18, r = 0.57; p < 0.05). At rest, quadriceps lipofuscin inclusions were significantly greater in hypoxaemic patients than in non-hypoxaemic patients (2.9 (0.2) v 2.0 (0.3) inclusions/fibre; p < 0.05). Exercise induced a greater increase in muscle TBARs and oxidised proteins in hypoxaemic patients than in non-hypoxaemic patients (40.6 (9.1)% v 10.1 (5.8)% and 51.2 (11.9)% v 3.7 (12.2)%, respectively, both p = 0.01). Neutrophil levels were significantly higher in hypoxaemic patients than in non-hypoxaemic patients (53.1 (11.6) v 21.5 (11.2) counts per fibre x 10(-3); p < 0.05). Exercise did not alter muscle neutrophil levels in either group. Muscle TNF-alpha was not detected at baseline or after exercise.

Conclusion: Chronic hypoxaemia was associated with lower quadriceps endurance time and worsened muscle oxidative stress at rest and after exercise. Increased muscle neutrophil levels could be a source of the increased baseline oxidative damage. The involvement of a muscle inflammatory process in the exercise induced oxidative stress of patients with COPD remains to be shown.

PubMed Disclaimer

Comment in

Similar articles

Cited by

References

    1. Thorax. 2001 Jun;56(6):432-7 - PubMed
    1. FASEB J. 2001 May;15(7):1181-6 - PubMed
    1. Clin Sci (Lond). 2001 Nov;101(5):465-75 - PubMed
    1. Muscle Nerve. 2002 Mar;25(3):383-9 - PubMed
    1. Am J Respir Crit Care Med. 2002 Sep 15;166(6):809-13 - PubMed

Publication types