Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2005 Jun;72(6):732-8.

Recombinant larvicidal bacteria with markedly improved efficacy against culex vectors of west nile virus

Affiliations
  • PMID: 15964958

Recombinant larvicidal bacteria with markedly improved efficacy against culex vectors of west nile virus

Hyun-Woo Park et al. Am J Trop Med Hyg. 2005 Jun.

Abstract

An urgent need exists for new agents to control mosquito vectors of disease. Mosquito larvicides based on the bacteria Bacillus thuringiensis subsp. israelensis (Bti) or B. sphaericus (Bs) are effective in many habitats, but use is limited by their high cost. Moreover, mosquito resistance evolves rapidly to Bs where it is used intensively. The efficacy of these bacteria is due to a binary protein (BsB) in Bs and four proteins (Cry4A, Cry4B, Cry11A, and Cyt1A) in Bti. Here we report the use of cyt1A promoters and a 5' mRNA stabilizing sequence to synthesize high levels of Bs2362 binary toxin in Bti strains. The recombinant BtiIPS-82/BsB showed high potency against fourth instars of Culex quinquefasciatus, a vector of West Nile virus, being 21-fold as potent as BtiIPS-82, and 32-fold as potent as Bs2362. Similar improved efficacy was obtained against larvae of Cx. tarsalis. Moreover, BtiIPS-82/BsB suppressed resistance to Bs2362 in Cx. quinquefasciatus.

PubMed Disclaimer

Publication types

LinkOut - more resources