Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2005 May:1049:146-60.
doi: 10.1196/annals.1334.014.

Magnetic resonance tracking of implanted adult and embryonic stem cells in injured brain and spinal cord

Affiliations

Magnetic resonance tracking of implanted adult and embryonic stem cells in injured brain and spinal cord

Eva Syková et al. Ann N Y Acad Sci. 2005 May.

Abstract

Stem cells are a promising tool for treating brain and spinal cord injury. Magnetic resonance imaging (MRI) provides a noninvasive method to study the fate of transplanted cells in vivo. We studied implanted rat bone marrow stromal cells (MSCs) and mouse embryonic stem cells (ESCs) labeled with iron-oxide nanoparticles (Endorem) and human CD34+ cells labeled with magnetic MicroBeads (Miltenyi) in rats with a cortical or spinal cord lesion. Cells were grafted intracerebrally, contralaterally to a cortical photochemical lesion, or injected intravenously. During the first week post transplantation, transplanted cells migrated to the lesion. About 3% of MSCs and ESCs differentiated into neurons, while no MSCs, but 75% of ESCs differentiated into astrocytes. Labeled MSCs, ESCs, and CD34+ cells were visible in the lesion on MR images as a hypointensive signal, persisting for more than 50 days. In rats with a balloon-induced spinal cord compression lesion, intravenously injected MSCs migrated to the lesion, leading to a hypointensive MRI signal. In plantar and Basso-Beattie-Bresnehan (BBB) tests, grafted animals scored better than lesioned animals injected with saline solution. Histologic studies confirmed a decrease in lesion size. We also used 3-D polymer constructs seeded with MSCs to bridge a spinal cord lesion. Our studies demonstrate that grafted adult as well as embryonic stem cells labeled with iron-oxide nanoparticles migrate into a lesion site in brain as well as in spinal cord.

PubMed Disclaimer

Similar articles

Cited by

MeSH terms

LinkOut - more resources