All-optical control of microfluidic components using form birefringence
- PMID: 15965480
- DOI: 10.1038/nmat1411
All-optical control of microfluidic components using form birefringence
Abstract
The reflection and refraction of light at a dielectric interface gives rise to forces due to changes in the photon momentum. At the microscopic level, these forces are sufficient to trap and rotate microscopic objects. Such forces may have a profound impact in the emergent area of microfluidics, where there is the desire to process minimal amounts of analyte. This places stringent criteria on the ability to pump, move and mix small volumes of fluid, which will require the use of micro-components and their controlled actuation. We demonstrate the modelling, fabrication and rotation of microgears based on the principle of form birefringence. Using a geometric anisotropy (a one-dimensional photonic crystal etched into the microgear), we can fabricate microgears of known birefringence, which may be readily rotated by manipulating the input polarization in a standard optical trap. This methodology offers a new and powerful mechanism for generating a wide range of microfabricated machines, such as micropumps, that may be driven by purely optical control.
Similar articles
-
Manipulation of liquid droplets using amphiphilic, magnetic one-dimensional photonic crystal chaperones.Nat Mater. 2004 Dec;3(12):896-9. doi: 10.1038/nmat1253. Epub 2004 Nov 7. Nat Mater. 2004. PMID: 15531887
-
Counter-propagating optical trapping system for size and refractive index measurement of microparticles.Biosens Bioelectron. 2006 Jan 15;21(7):1029-36. doi: 10.1016/j.bios.2005.03.011. Epub 2005 Apr 22. Biosens Bioelectron. 2006. PMID: 16368481
-
Microfluidic stickers for cell- and tissue-based assays in microchannels.Lab Chip. 2009 Apr 7;9(7):1011-3. doi: 10.1039/b819090a. Epub 2008 Dec 5. Lab Chip. 2009. PMID: 19294316
-
Optical torque on microscopic objects.Methods Cell Biol. 2007;82:525-61. doi: 10.1016/S0091-679X(06)82019-4. Methods Cell Biol. 2007. PMID: 17586271 Review.
-
Light at work: the use of optical forces for particle manipulation, sorting, and analysis.Electrophoresis. 2008 Dec;29(24):4813-51. doi: 10.1002/elps.200800484. Electrophoresis. 2008. PMID: 19130566 Review.
Cited by
-
Versatile Multilayer Metamaterial Nanoparticles with Tailored Optical Constants for Force and Torque Transduction.ACS Nano. 2020 Nov 24;14(11):14895-14906. doi: 10.1021/acsnano.0c04233. Epub 2020 Nov 10. ACS Nano. 2020. PMID: 33170655 Free PMC article.
-
Optofluidic integration for microanalysis.Microfluid Nanofluidics. 2008;4(1):53-79. doi: 10.1007/s10404-007-0223-y. Epub 2007 Sep 11. Microfluid Nanofluidics. 2008. PMID: 32214954 Free PMC article.
-
Reconfigurable multi-component micromachines driven by optoelectronic tweezers.Nat Commun. 2021 Sep 9;12(1):5349. doi: 10.1038/s41467-021-25582-8. Nat Commun. 2021. PMID: 34504081 Free PMC article.
-
Spin to orbital light momentum conversion visualized by particle trajectory.Sci Rep. 2019 Mar 11;9(1):4127. doi: 10.1038/s41598-019-40475-z. Sci Rep. 2019. PMID: 30858528 Free PMC article.
-
Optofluidic generation of Laguerre-Gaussian beams.Opt Express. 2009 Sep 28;17(20):17555-62. doi: 10.1364/OE.17.017555. Opt Express. 2009. PMID: 19907539 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources