Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2005 Jun 28;44(25):9058-66.
doi: 10.1021/bi0502588.

The HIV-1 leader RNA conformational switch regulates RNA dimerization but does not regulate mRNA translation

Affiliations

The HIV-1 leader RNA conformational switch regulates RNA dimerization but does not regulate mRNA translation

Truus E M Abbink et al. Biochemistry. .

Abstract

The untranslated leader RNA is the most conserved part of the human immunodeficiency virus type I (HIV-1) genome. It contains many regulatory motifs that mediate a variety of steps in the viral life cycle. Previous work showed that the full-length leader RNA can adopt two alternative structures: a long distance interaction (LDI) and a branched multiple-hairpin (BMH) structure. The BMH structure exposes the dimer initiation site (DIS) hairpin, whereas this motif is occluded in the LDI structure. Consequently, these structures differ in their capacity to form RNA dimers in vitro. The BMH structure is dimerization-competent, due to DIS hairpin formation, but also presents the splice donor (SD) and RNA packaging (Psi) hairpins. In the LDI structure, an extended RNA packaging (Psi(E)) hairpin is folded, which includes the splice donor site and gag coding sequences. The gag initiation codon is engaged in a long distance base pairing interaction with sequences in the upstream U5 region in the BMH structure, thus forming the evolutionarily conserved U5-AUG duplex. Therefore, the LDI-BMH equilibrium may affect not only the process of RNA dimer formation but also translation initiation. In this study, we designed mutations in the 3'-terminal region of the leader RNA that alter the equilibrium of the LDI-BMH structures. The mutant leader RNAs are affected in RNA dimer formation, but not in their translation efficiency. These results indicate that the LDI-BMH status does not regulate HIV-1 RNA translation, despite the differential presentation of the gag initiation codon in both leader RNA structures.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources