Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2005 Sep 2;385(1):70-5.
doi: 10.1016/j.neulet.2005.05.022.

Dynamics of neurogenesis in the dentate gyrus of adult rats

Affiliations
Comparative Study

Dynamics of neurogenesis in the dentate gyrus of adult rats

Heather Y McDonald et al. Neurosci Lett. .

Abstract

Hippocampal neurogenesis declines steadily over the first year of life in the rodent, but the process persists into senescence despite a dramatic drop in the number of neurons it produces. At this point though, the survival and development patterns exhibited by new granule cells in the aging brain remain unclear in relation to patterns observed in the younger brain. The present study was carried out in order to obtain a direct quantitative comparison of hippocampal neurogenesis in juvenile and middle-aged rats with a high degree of temporal resolution, and to compare the survival and differentiation of the new cells over time. Thirty-eight-day-old and 12-month-old, male Sprague--Dawley rats were injected with 5-bromo-2'-deoxyuridine (BrdU) in order to label cells dividing in the dentate gyrus over a 24-h period, and immunohistochemical labeling was performed in order to record cell production and survival at eight different time points over the following two-month period. Using a marker of neuronally committed precursors and immature neurons (doublecortin; DCX), as well as a marker of mature neurons (calbindin d-28K; CaBP), the extent and timeline of neuronal differentiation, maturation, and migration of the new cells were also characterized. Results indicated that 12-month-old rats experienced a nearly 94% reduction in neurogenesis relative to juveniles, due almost entirely to a 92% drop in cell production. A largely preserved course of development and migration in the remaining newborn cells suggests treatments that enhance cell proliferation could be crucial in reversing the age-related decline in neurogenesis.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources