Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2005 Jun 25;57(3):303-9.

[Effect of IP3 on BK channels of porcine coronary artery smooth muscle cells]

[Article in Chinese]
Affiliations
  • PMID: 15968424
Free article

[Effect of IP3 on BK channels of porcine coronary artery smooth muscle cells]

[Article in Chinese]
Fang Cai et al. Sheng Li Xue Bao. .
Free article

Abstract

D-myo-inositol 1,4,5-trisphosphate (IP(3)) plays an important role in signal transduction. It releases Ca(2+) from intracellular sites, which activates the Ca(2+)-dependent channels such as large-conductance Ca(2+)-activated potassium channels (BK channels). The present study was therefore designed to determine if the activity of BK channels in porcine coronary artery smooth muscle cells was increased by IP(3). Using the inside-out patch-clamp technique, the activity of single BK channels was recorded in porcine coronary artery smooth muscle cells. In excised inside-out membrane patches, IP(3) (10-50 micromol/L) enhanced the open probability (Po) of BK channels in a dose-dependent manner in the intracellular side of inside-out patches and its effect was almost completely abolished by washout. The open-state probability of the BK channels increased from a control level of 0.0402+/-0.0152 to 0.1365+/-0.0212 (20 micromol/L IP(3)) and 0.1865+/-0.0175 (30 micromol/L IP(3)). IP(3) decreased the mean close time markedly, but had no effect on the amplitude of BK channels. The activation of IP(3) on BK channels did not decline. The metabolite of IP(3) had no obvious effect on BK channels. This study provides evidence that IP(3) activates BK channels in porcine coronary artery smooth muscle cells in a dose-dependence manner.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

Substances

LinkOut - more resources