Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2003 Jul;19(4):484-8.

[Collagen membrane as scaffold for the three-dimensional cultivation of cardiac cells in vitro]

[Article in Chinese]
Affiliations
  • PMID: 15969070

[Collagen membrane as scaffold for the three-dimensional cultivation of cardiac cells in vitro]

[Article in Chinese]
Xing-Mao Liu et al. Sheng Wu Gong Cheng Xue Bao. 2003 Jul.

Abstract

The objective of this study was to develop research of cardiac cells to reestablish 3D tissue architecture in vitro, we performed studies using collagen membrane as three-dimensional scaffold for cardiac cells culture with the principles and methods of tissue engineering. The polymer scaffold provides a 3-D substrate for cell attachment and tissue formation. Cardiac cells isolated by enzymatic digestion from 1d old neonatal rats were seeded to three-dimensional collagen scaffolds and tissue culture plates. The morphology, beating rate and the metabolic indexes, including specific consumption rate of glucose (q(glu)) , specific production rate of lactate (q(lac)), lactate transform rate ( Y(lac/glu)), specific creatine kinase (CK) and lactate dehydrogenase (LDH) activities of cardiac cells cultured on three-dimensional collagen membrane and tissue culture plates were compared. It was found that cells shape and cells' CK and LDH activity was no differences between 3D and 2D cultures and cell beat rate on cell culture cluster was slower than those cells cultured on collagen membrane, However the cell glucose consumption and lactate yield rate of cells cultured on cluster was higher than those cells cultured on collagen membrane. After 5 days of cultivation, cardiac cells cultured on collagen membrane scaffolds organized into three-dimensional (3D) aggregates as opposed to the two-dimensional (2D) aggregates mosaic pattern seen in tissue culture plates, and spontaneous and rhythmical contractile 3D cultures in unison were visible to the naked eye and the area of synchronous contract three-dimensional (3D) aggregates reaches 80cm2. The mean value of q(glu), q(lac) and Y(lac/glu) of cultured on three-dimensional collagen scaffold was 7.37 micromol/10(6) cells/d, 2.92 micromol/10(6) cells/ d and 0.38 micromol/micromol, versus 7.59 micromol/10(6)cells/d, 3.83 micromol/10(6) cells/d and 0.51 micromol/micromol in tissue culture plates. These results demonstrate that cardiac cells immobilized on collagen membrane in 3D cultures maintain similar metabolic activity and contractile function when compared with native cardiac cells. The above results support the idea that engineered cardiac tissue can be used as a model of native tissue for studies of tissue development and function in vitro and eventually for tissue repair in vivo.

PubMed Disclaimer

Similar articles

Publication types

LinkOut - more resources