Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2004 Mar;20(2):157-64.

[Advances in the research of genetic engineering of heavy metal resistance and accumulation in plants]

[Article in Chinese]
Affiliations
  • PMID: 15969101
Review

[Advances in the research of genetic engineering of heavy metal resistance and accumulation in plants]

[Article in Chinese]
Ming-Lin Lang et al. Sheng Wu Gong Cheng Xue Bao. 2004 Mar.

Abstract

Using plants to remove or inactivate heavy metal pollutants from soils and surface waters provide a cheap and sustainable approach of Phytoremediation. However, field trials suggested that the efficiency of contaminant removal using natural hyperaccumulators is insufficient, due to that many of these species are slow growing and produce little shoot biomass. These factors severely constrain their potential for large-scale decontamination of polluted soils. Moreover, both the micronutrient and toxic metal content accumulated in crops determine the quality and safety of our food-chain. By a transgenic approach, the introduction of novel genes responsible for hyperaccumulating phenotype into high biomass plants and/or stable crops uptaking minerals as food is a promising strategy for the development of effective techniques of phytoremediation and improvement of nutritional value of stable food through a viable commercialization. Recently, the progress at molecular level for heavy metal uptaking, detoxification and hyperaccumulation in plants, and also the clarification of some functional genes in bacteria, yeasts, plants and animals, have advanced the research on genetic engineering plants of heavy metal resistance and accumulation, and on the functional genes (e . g. gsh1, MerA and ArsC) and their genetic transformated plants. These studies demonstrated commercialization potentials of phytoremediation. In this paper, the molecular approach, effects and problems in gene transformation were discussed in details, and also the strategy and emphases were probed into the future research.

PubMed Disclaimer

Similar articles

MeSH terms