Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2004 May 11;20(10):4182-6.
doi: 10.1021/la036263z.

Electrophoretic properties of DNA-modified colloidal gold nanoparticles

Affiliations

Electrophoretic properties of DNA-modified colloidal gold nanoparticles

Pär Sandström et al. Langmuir. .

Abstract

Oligonucleotide-modified gold nanoparticles are used in various kinds of colorimetric DNA targeting biosensors and nanoparticle assembly techniques. Herein we focus on how the size of 13 nm gold colloids changes upon DNA modification. We have performed a series of electrophoresis experiments of particles modified both thiol specifically and nonspecifically with single- and double-stranded oligonucleotides of different lengths (12- and 25-mers). Both unmodified and DNA-modified particles migrated at constant velocity in different concentrations of Metaphor agarose gels. Linear Ferguson plots were obtained for all samples, and on the basis of the Ogston model approach, we present how the particle size increases in different amounts depending on the oligonucleotide length, secondary structure, and type of modification (specific or nonspecific). Thiol specifically modified particles obtain a thicker DNA layer since the oligonucleotides are only anchored to the particle in one end and thus stand up from the surface more compared to nonspecifically modified ones, where the oligonucleotides tend to lay more or less flat on the surface with multiple adsorption points. However the thickness of the DNA layer for the thiol specifically modified particles is smaller than the length of a corresponding stretched oligonucleotide, suggesting a flexibility of the thiol-bound strands allowing them to tilt relative to the particle surface.

PubMed Disclaimer

Similar articles

Cited by

LinkOut - more resources