Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2005 Jun 21:5:19.
doi: 10.1186/1472-6947-5-19.

Real time spatial cluster detection using interpoint distances among precise patient locations

Affiliations

Real time spatial cluster detection using interpoint distances among precise patient locations

Karen L Olson et al. BMC Med Inform Decis Mak. .

Abstract

Background: Public health departments in the United States are beginning to gain timely access to health data, often as soon as one day after a visit to a health care facility. Consequently, new approaches to outbreak surveillance are being developed. When cases cluster geographically, an analysis of their spatial distribution can facilitate outbreak detection. Our method focuses on detecting perturbations in the distribution of pair-wise distances among all patients in a geographical region. Barring outbreaks, this distribution can be quite stable over time. We sought to exemplify the method by measuring its cluster detection performance, and to determine factors affecting sensitivity to spatial clustering among patients presenting to hospital emergency departments with respiratory syndromes.

Methods: The approach was to (1) define a baseline spatial distribution of home addresses for a population of patients visiting an emergency department with respiratory syndromes using historical data; (2) develop a controlled feature set simulation by inserting simulated outbreak data with varied parameters into authentic background noise, thereby creating semisynthetic data; (3) compare the observed with the expected spatial distribution; (4) establish the relative value of different alarm strategies so as to maximize sensitivity for the detection of clustering; and (5) measure factors which have an impact on sensitivity.

Results: Overall sensitivity to detect spatial clustering was 62%. This contrasts with an overall alarm rate of less than 5% for the same number of extra visits when the extra visits were not characterized by geographic clustering. Clusters that produced the least number of alarms were those that were small in size (10 extra visits in a week, where visits per week ranged from 120 to 472), diffusely distributed over an area with a 3 km radius, and located close to the hospital (5 km) in a region most densely populated with patients to this hospital. Near perfect alarm rates were found for clusters that varied on the opposite extremes of these parameters (40 extra visits, within a 250 meter radius, 50 km from the hospital).

Conclusion: Measuring perturbations in the interpoint distance distribution is a sensitive method for detecting spatial clustering. When cases are clustered geographically, there is clearly power to detect clustering when the spatial distribution is represented by the M statistic, even when clusters are small in size. By varying independent parameters of simulated outbreaks, we have demonstrated empirically the limits of detection of different types of outbreaks.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Pair-wise distances between home addresses of respiratory patients to one hospital over three years by season. The twelve curves (4 seasons × 3 years) overlap considerably, suggesting stability for the distance distribution over time. The maximum interpoint distance was 100 miles; the distribution up to 50 is shown.
Figure 2
Figure 2
Baseline distribution of respiratory patients to the emergency department of one hospital. The study population (blue dots) lived within 80 km of the hospital (black ring). Simulated clusters were placed at 5, 15, and 50 km, along the red rings. Total population density of study patients within the four areas pictured was: 182.6 per square km within 0–5 km of the hospital, 32.6 per sq km within 5–15 km, 1.3 per sq km within 15–50 km, and 0.1 per sq km within 50–80 km.

References

    1. Mandl KD, Overhage JM, Wagner MM, Lober WB, Sebastiani P, Mostashari F, Pavlin JA, Gesteland PH, Treadwell T, Koski E, et al. Implementing syndromic surveillance: a practical guide informed by the early experience. Journal of the American Medical Informatics Association. 2004;11:141–150. doi: 10.1197/jamia.M1356. - DOI - PMC - PubMed
    1. Brillman JC, Burr T, Forslund D, Joyce E, Picard R, Umland E. Modeling emergency department visit patterns for infectious disease complaints: results and application to disease surveillance. BMC Med Inform Decis Mak. 2005;5:4. doi: 10.1186/1472-6947-5-4. - DOI - PMC - PubMed
    1. Heffernan R, Mostashari F, Das D, Karpati A, Kulldorff M, Weiss D. Syndromic surveillance in public health practice, New York City. Emerg Infect Dis. 2004;10:858–864. - PubMed
    1. Update 15 – Situation in Hong Kong, activities of WHO team in China. http://www.who.int/csr/sarsarchive/2003_03_31/en/
    1. Brookmeyer R, Stroup DF. Monitoring the health of populations: Statistical principles and methods for public health surveillance. Oxford University Press; 2004.

Publication types

MeSH terms

LinkOut - more resources