Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2005 Jul;29(6):901-7.
doi: 10.1016/j.pnpbp.2005.04.022.

Inhibitory effects of long-term administration of ferulic acid on astrocyte activation induced by intracerebroventricular injection of beta-amyloid peptide (1-42) in mice

Affiliations
Comparative Study

Inhibitory effects of long-term administration of ferulic acid on astrocyte activation induced by intracerebroventricular injection of beta-amyloid peptide (1-42) in mice

Jae-Young Cho et al. Prog Neuropsychopharmacol Biol Psychiatry. 2005 Jul.

Abstract

Accumulating evidence indicates that glial cells are actively involved in the pathogenesis of Alzheimer's disease. We recently reported protective effects of long-term administration of ferulic acid against learning and memory deficit induced by centrally administered beta-amyloid peptide (Abeta)1-42 in mice. In that report, we found that the Abeta1-42-induced increases in immunoreactivities of glial fibrillary acidic protein, the astrocyte marker, and interleukin(IL)-1beta in the hippocampus are also suppressed by pretreatment with ferulic acid. In the present study, we aimed to further characterize the effect of long-term administration of ferulic acid on the centrally administered Abeta1-42-induced activation of glial cells in mice. Mice were allowed free access to drinking water (control) or water containing ferulic acid (0.006%) for 4 weeks, and then Abeta1-42 (410 pmol) was administered via intracerebroventricular injection. Intracerebroventricularly injected Abeta1-42 induced an increase in immunoreactivities of endothelial nitric oxide synthase (eNOS) and 3-nitrotyrosine (3-NT) in the activated astrocytes in the hippocampus. Pretreatment of ferulic acid for 4 weeks prevented the Abeta1-42-induced increase in eNOS and 3-NT immunoreactivities. Administration of ferulic acid per se induced a transient and slight increase in eNOS immunoreactivity in the hippocampus on day 14, which returned to basal levels on day 28. Intracerebroventricularly injected Abeta1-42 also increased interleukin-1alpha(IL-1alpha) immunoreactivity in the hippocampus, which was also suppressed by pretreatment with ferulic acid. These results demonstrate that long-term administration of ferulic acid induces suppression of the centrallly injected Abeta1-42-induced activation of astrocytes which is suggested to underlie the protective effect of ferulic acid against Abeta1-42 toxicity in vivo.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources