Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2004 Dec:73 Suppl 2:S206-10.
doi: 10.1016/s0167-8140(04)80049-5.

Development of light ion therapy at the Karolinska Hospital and Institute

Affiliations

Development of light ion therapy at the Karolinska Hospital and Institute

Hans Svensson et al. Radiother Oncol. 2004 Dec.

Abstract

Recent developments in radiation therapy have made it possible to optimize the high dose region to cover almost any target volume and shape at the same time as the dose level to adjacent organs at risk is acceptable. Further implementations of IMRT (Intensity Modulated Radiation Therapy), and inverse treatment planning using already available technologies but also foreseeable improved design of therapy accelerators delivering electron- and photon beams, will bring these advances to the benefit of a broad population of cancer patients. Protons will therefore generally not be needed since in most situations the improvement will be insignificant or moderate due to the large lateral penumbra with deep proton therapy. A further step would be to use He-ions, which have only half the penumbra width of protons and still a fairly low-LET in the spread-out Bragg peak. There is however still a group of patients that cannot be helped by these advances as the tumor might be radioresistant for the presently utilized low ionization density beam qualities. The ultimate step in the therapy development process should therefore be to optimize the beam quality for each tumor-normal tissue situation. To facilitate beam quality optimization light ions are needed. It is argued that in many radioresistant tumors a dose-mean LET of 25-50 eV/nm in the target would be optimum as then tumor cells will be lost in the highest proportion through apoptotic cell kill and the superficial tissues will still be irradiated with a fairly low LET. Light ions using Li, Be, B, and C would then be the ideal choice. In this paper a light ion facility is outlined for the Karolinska University Hospital facilitating both dose distribution and beam quality optimization.

PubMed Disclaimer

Similar articles

Cited by

LinkOut - more resources