Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1992 Jun 1;206(2):349-57.
doi: 10.1111/j.1432-1033.1992.tb16934.x.

Purification and characterization of a thermostable carboxypeptidase from the extreme thermophilic archaebacterium Sulfolobus solfataricus

Affiliations
Free article

Purification and characterization of a thermostable carboxypeptidase from the extreme thermophilic archaebacterium Sulfolobus solfataricus

S Colombo et al. Eur J Biochem. .
Free article

Abstract

A carboxypeptidase was purified to electrophoretic homogeneity from the thermoacidophilic archaebacterium Sulfolobus solfataricus. Molecular masses assessed by SDS/PAGE and gel filtration were 42 kDa and 170 kDa, respectively, which points to a tetrameric structure for the molecule. An isoelectric point of 5.9 was also determined. The enzyme was proven to be a metalloprotease, as shown by the inhibitory effects exerted by EDTA and o-phenanthroline; furthermore, dialysis against EDTA led to a complete loss of activity, which could be restored by addition of Zn2+ in the micromolar range, and, to a lesser extent, by Co2+. The enzyme was endowed with a broad substrate specificity, as shown by its ability to release basic, acidic and aromatic amino acids from the respective benzoylglycylated and benzyloxycarbonylated amino acids. An esterase activity of the carboxypeptidase was also demonstrated on different esterified amino acids and dipeptides blocked at the N-terminus. The enzyme displayed broad pH optima ranging over 5.5-7.0, or 5.5-9.0, when using an acidic or a basic benzyloxycarbonylated amino acid, respectively. With regard to thermostability, it was proven to be completely stable on incubation for 15 min at 85 degrees C. Furthermore, thanks to its relatively low activation energy, i.e. 31.0 kJ/mol, it was still significantly active at room temperature. At 40 degrees C, the enzyme could withstand 0.1% SDS and different organic solvents: particularly ethanol up to 99%. Amino acid and N-terminal sequence analyses did not evidence any similarity to carboxypeptidases A nor thermolysin. A weak similarity was only found with bovine carboxypeptidase B.

PubMed Disclaimer

Similar articles

Cited by

Publication types

Associated data

LinkOut - more resources