Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2005 Jun 1;122(21):214301.
doi: 10.1063/1.1924507.

A quantum wave-packet study of intersystem crossing effects in the O(3P2,1,0,1D2)+H2 reaction

Affiliations

A quantum wave-packet study of intersystem crossing effects in the O(3P2,1,0,1D2)+H2 reaction

Tian-Shu Chu et al. J Chem Phys. .

Abstract

We present for the first time an exact quantum study of spin-orbit-induced intersystem crossing effects in the title reaction. The time-dependent wave-packet method, combined with an extended split operator scheme, is used to calculate the fine-structure resolved cross section. The calculation involves four electronic potential-energy surfaces of the 1A' state [J. Dobbyn and P. J. Knowles, Faraday Discuss. 110, 247 (1998)], the 3A' and the two degenerate 3A" states [S. Rogers, D. Wang, A. Kuppermann, and S. Wald, J. Phys. Chem. A 104, 2308 (2000)], and the spin-orbit couplings between them [B. Maiti, and G. C. Schatz, J. Chem. Phys. 119, 12360 (2003)]. Our quantum dynamics calculations clearly demonstrate that the spin-orbit coupling between the triplet states of different symmetries has the greatest contribution to the intersystem crossing, whereas the singlet-triplet coupling is not an important effect. A branch ratio of the spin state Pi32 to Pi12 of the product OH was calculated to be approximately 2.75, with collision energy higher than 0.6 eV, when the wave packet was initially on the triplet surfaces. The quantum calculation agrees quantitatively with the previous quasiclassical trajectory surface hopping study.

PubMed Disclaimer

LinkOut - more resources