The liquidlike ordering of lipid A-diphosphate colloidal crystals: the influence of Ca2+, Mg2+, Na+, and K+ on the ordering of colloidal suspensions of lipid A-diphosphate in aqueous solutions
- PMID: 15974782
- DOI: 10.1063/1.1913477
The liquidlike ordering of lipid A-diphosphate colloidal crystals: the influence of Ca2+, Mg2+, Na+, and K+ on the ordering of colloidal suspensions of lipid A-diphosphate in aqueous solutions
Abstract
A comprehensive study was performed on electrostatically stabilized aqueous dispersion of lipid A-diphosphate in the presence of bound Ca2+, Mg2+, K+, and Na+ ions at low ionic strength (0.10-10.0-mM NaCl, 25 degrees C) over a range of volume fraction of 1.0 x 10(-4)< or =phi< or =4.95 x 10(-4). These suspensions were characterized by light scattering (LS), quasielastic light scattering, small-angle x-ray scattering, transmission electron microscopy, scanning electron microscopy, conductivity measurements, and acid-base titrations. LS and electron microscopy yielded similar values for particle sizes, particle size distributions, and polydispersity. The measured static structure factor, S(Q), of lipid A-diphosphate was seen to be heavily dependent on the nature and concentration of the counterions, e.g., Ca2+ at 5.0 nM, Mg2+ at 15.0 microM, and K+ at 100.0 microM (25 degrees C). The magnitude and position of the S(Q) peaks depend not only on the divalent ion concentration (Ca2+ and Mg2+) but also on the order of addition of the counterions to the lipid A-diphosphate suspension in the presence of 0.1-microM NaCl. Significant changes in the rms radii of gyration (R2G) 1/2 of the lipid A-diphosphate particles were observed in the presence of Ca2+ (24.8+/-0.8 nm), Mg2+ (28.5+/-0.7 nm), and K+ (25.2+/-0.6 nm), whereas the Na+ salt (29.1+/-0.8 nm) has a value similar to the one found for the de-ionized lipid A-diphosphate suspensions (29.2+/-0.8 nm). Effective particle charges were determined by fits of the integral equation calculations of the polydisperse static structure factor, S(Q), to the light-scattering data and they were found to be in the range of Z*=700-750 for the lipid A-diphosphate salts under investigation. The light-scattering data indicated that only a small fraction of the ionizable surface sites (phosphate) of the lipid A-diphosphate was partly dissociated (approximately 30%). It was also discovered that a given amount of Ca2+ (1.0-5.0 nM) or K+ (100 microM) influenced the structure much more than Na+ (0.1-10.0-mM NaCl) or Mg2+ (50 microM). By comparing the heights and positions of the structure factor peaks S(Q) for lipid A-diphosphate-Na+ and lipid A-diphosphate-Ca2+, it was concluded that the structure factor does not depend simply on ionic strength but more importantly on the internal structural arrangements of the lipid A-diphosphate assembly in the presence of the bound cations. The liquidlike interactions revealed a considerable degree of ordering in solution accounting for the primary S(Q) peak and also the secondary minimum at large particle separation. The ordering of lipid A-diphosphate-Ca2+ colloidal crystals in suspension showed six to seven discrete diffraction peaks and revealed a face-centered-cubic (fcc) lattice type (a=56.3 nm) at a volume fraction of 3.2 x 10(-4)< or =phi< or =3.9 x 10(-4). The K+ salt also exhibited a fcc lattice (a=55.92 nm) at the same volume fractions, but reveals a different peak intensity distribution, as seen for the lipid A-diphosphate-Ca2+ salt. However, the Mg2+ and the Na+ salts of lipid A-diphosphate showed body-centered-cubic (bcc) lattices with a=45.50 nm and a=41.50 nm, respectively (3.2 x 10(-4)< or =phi< or =3.9 x 10(-4)), displaying the same intensity distribution with the exception of the (220) diffraction peaks, which differ in intensity for both salts of lipid A-diphosphate.
Similar articles
-
Ordering of lipid A-monophosphate clusters in aqueous solutions.J Chem Phys. 2007 Sep 21;127(11):115103. doi: 10.1063/1.2768524. J Chem Phys. 2007. PMID: 17887884
-
Observations of liquidlike order of charged rodlike lipid A diphosphate assemblies at pH 8.5.J Chem Phys. 2008 Feb 14;128(6):065105. doi: 10.1063/1.2834206. J Chem Phys. 2008. PMID: 18282076
-
The phase diagram of charged colloidal lipid A-diphosphate dispersions.J Phys Chem B. 2008 Mar 20;112(11):3290-3. doi: 10.1021/jp711720j. Epub 2008 Feb 26. J Phys Chem B. 2008. PMID: 18298113
-
Interactions of Mg and K on cerebral vessels--aspects in view of stroke. Review of present status and new findings.Magnesium. 1984;3(4-6):195-211. Magnesium. 1984. PMID: 6399342 Review.
-
Ca2+ versus Mg2+ coordination at the nucleotide-binding site of the sarcoplasmic reticulum Ca2+-ATPase.J Mol Biol. 2007 Apr 20;368(1):1-7. doi: 10.1016/j.jmb.2007.01.082. Epub 2007 Feb 7. J Mol Biol. 2007. PMID: 17335848 Review.
Cited by
-
Trans-envelope multidrug efflux pumps of Gram-negative bacteria and their synergism with the outer membrane barrier.Res Microbiol. 2018 Sep-Oct;169(7-8):351-356. doi: 10.1016/j.resmic.2018.02.002. Epub 2018 Feb 16. Res Microbiol. 2018. PMID: 29454787 Free PMC article. Review.
-
Synergy between Active Efflux and Outer Membrane Diffusion Defines Rules of Antibiotic Permeation into Gram-Negative Bacteria.mBio. 2017 Oct 31;8(5):e01172-17. doi: 10.1128/mBio.01172-17. mBio. 2017. PMID: 29089426 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Medical
Miscellaneous