Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2005 Aug 5;333(3):664-70.
doi: 10.1016/j.bbrc.2005.05.166.

Dimethyl sulfoxide targets phage RNA polymerases to promote transcription

Affiliations

Dimethyl sulfoxide targets phage RNA polymerases to promote transcription

Zhiqiang Chen et al. Biochem Biophys Res Commun. .

Abstract

Dimethyl sulfoxide (DMSO) is a "universal" solvent in pharmaceutical sciences and cell biology. DMSO was previously reported to facilitate in vitro transcription of chromatin and supercoiled plasmid, with the underlying mechanism being attributed to the alteration of the template structure. Here, we demonstrated that low concentrations of DMSO significantly increase the phage polymerase-catalyzed RNA synthesis when the naked and short PCR products were used as templates, suggesting that DMSO promotes transcription through additional mechanism(s). Interestingly, SP6 RNA polymerase was more sensitive to the DMSO stimulation than T7 RNA polymerase, suggesting that the polymerase is an important target for DMSO stimulation of RNA synthesis. Consistent with this finding, we also showed that DMSO dramatically elevated the RNA polymerase activity. This elevated activity is explained by altered polymerase structure as reflected by a change in intrinsic fluorescence. Furthermore, DMSO was shown to simultaneously accumulate both the abortive and full-length transcripts, leading us to conclude that the DMSO-altered polymerase structure primarily encodes an enhanced activity at the stage of transcription initiation. DMSO-induced alteration of the polymerase structure and function highlights a potentially generalized mechanism in interpreting the molecular action of this popular solvent.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources