Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2005 Jul;101(1):180-6, table of contents.
doi: 10.1213/01.ANE.0000154303.93909.A3.

The effects of the tramadol metabolite O-desmethyl tramadol on muscarinic receptor-induced responses in Xenopus oocytes expressing cloned M1 or M3 receptors

Affiliations

The effects of the tramadol metabolite O-desmethyl tramadol on muscarinic receptor-induced responses in Xenopus oocytes expressing cloned M1 or M3 receptors

Motohiro Nakamura et al. Anesth Analg. 2005 Jul.

Abstract

O-desmethyl tramadol is one of the main metabolites of tramadol. It has been widely used clinically and has analgesic activity. Muscarinic receptors are involved in neuronal functions in the brain and autonomic nervous system, and much attention has been paid to these receptors as targets for analgesic drugs in the central nervous system. We have reported that tramadol inhibits the function of type-1 muscarinic (M(1)) receptors and type-3 muscarinic (M(3)) receptors, suggesting that muscarinic receptors are sites of action of tramadol. However, the effects of O-desmethyl tramadol on muscarinic receptor functions have not been studied in detail. In this study, we investigated the effects of O-desmethyl tramadol on M(1) and M(3) receptors, using the Xenopus oocyte expression system. O-desmethyl tramadol (0.1-100 microM) inhibited acetylcholine (ACh)-induced currents in oocytes expressing the M(1) receptors (half-maximal inhibitory concentration [IC(50)] = 2 +/- 0.6 microM), whereas it did not suppress ACh-induced currents in oocytes expressing the M(3) receptor. Although GF109203X, a protein kinase C inhibitor, increased the ACh-induced current, it had little effect on the inhibition of ACh-induced currents by O-desmethyl tramadol in oocytes expressing M(1) receptors. The inhibitory effect of O-desmethyl tramadol on M(1) receptor was overcome when the concentration of ACh was increased (K(D) with O-desmethyl tramadol = 0.3 microM). O-desmethyl tramadol inhibited the specific binding of [(3)H]quinuclidinyl benzilate ([(3)H]QNB) to the oocytes expressed M(1) receptors (IC(50) = 10.1 +/- 0.1 microM), whereas it did not suppress the specific binding of [(3)H]QNB to the oocytes expressed M(3) receptors. Based on these results, O-desmethyl tramadol inhibits functions of M(1) receptors but has little effect on those of M(3) receptors. This study demonstrates the molecular action of O-desmethyl tramadol on the receptors and may help to explain its neural function.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources