Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2005 Aug 5;1724(3):281-7.
doi: 10.1016/j.bbagen.2005.04.028.

Indirect evidence of submicroscopic pores in giant unilamellar [correction of unilamelar] vesicles

Affiliations
Review

Indirect evidence of submicroscopic pores in giant unilamellar [correction of unilamelar] vesicles

N Rodriguez et al. Biochim Biophys Acta. .

Abstract

Formation of pore-like structures in cell membranes could participate in exchange of matter between cell compartments and modify the lipid distribution between the leaflets of a bilayer. We present experiments on two model systems in which major lipid redistribution is attributed to few submicroscopic transient pores. The first kind of experiments consists in destabilizing the membrane of a giant unilamellar vesicle by inserting conic-shaped fluorescent lipids from the outer medium. The inserted lipids (10% of the vesicle lipids) should lead to membrane rupture if segregated on the outer leaflet. We show that a 5-nm diameter pore is sufficient to ease the stress on the membrane by redistributing the lipids. The second kind of experiments consists in forcing giant vesicles containing functionalized lipids to adhere. This adhesion leads to hemifusion (merging of the outer leaflets). In certain cases, the formation of pores in one of the vesicles is attested by contrast loss on this vesicle and redistribution of fluorescent labels between the leaflets. The kinetics of these phenomena is compatible with transient submicroscopic pores and long-lived membrane defects.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources