Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2005 Jul;39(1):79-98.
doi: 10.1016/j.yjmcc.2004.12.004. Epub 2005 Feb 19.

K(ATP) channels "vingt ans après": ATG to PDB to Mechanism

Affiliations
Review

K(ATP) channels "vingt ans après": ATG to PDB to Mechanism

Andrey P Babenko. J Mol Cell Cardiol. 2005 Jul.

Abstract

A multidisciplinary effort over twenty years has provided deep insight into the nature of K(ATP) channels. First discovered in cardiomyocytes and pancreatic beta-cells, as ubiquitous sensors of the ADP/ATP ratio they are implicated in multiple disorders characterized by the uncoupling of excitation from metabolism. Composed of two disparate subunits these large octameric channels present a formidable challenge to scientists interested in understanding mechanism in physical, chemical, and structural terms. Post-cloning studies have defined the domains and interactions, within and between the nucleotide-inhibited K(IR) pore and nucleotide-stimulated, drug-binding core of the ATP-Binding Cassette (ABC) regulatory subunits, that control channel assembly and gating. Determination of the three-dimensional structures of the bacterial prototypes of the channel subunits allowed homology modeling and has provided increasingly detailed mechanistic understanding. Here I review the early electrophysiology and molecular biology of K(ATP) channels, cover biophysical principles governing their single channel kinetics, integrate this with current efforts to understand ligand-recognition and gating within the pore and SUR core, and propose a mechanism of coupling based on recent identification of a SUR gatekeeper module and first composite models of (SUR/K(IR) 6.0)(4) complexes. This mechanism, based on interactions between inter-K(IR) subunit ATP-binding pockets and a unique bi-directional regulatory apparatus comprised of elements from the gatekeeper and K(IR) amino terminus, provides a molecular perspective for understanding the biophysical basis underlying the polar effects of pathogenic mutations in K(ATP) channel subunits.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources