Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2006 Jan-Apr;90(1-3):38-63.
doi: 10.1016/j.pbiomolbio.2005.05.003. Epub 2005 Jun 6.

Voltage-dependent calcium channels and cardiac pacemaker activity: from ionic currents to genes

Affiliations
Review

Voltage-dependent calcium channels and cardiac pacemaker activity: from ionic currents to genes

Matteo E Mangoni et al. Prog Biophys Mol Biol. 2006 Jan-Apr.

Abstract

The spontaneous activity of pacemaker cells in the sino-atrial node controls the heart rhythm and rate under physiological conditions. Compared to working myocardial cells, pacemaker cells express a specific array of ionic channels. The functional importance of different ionic channels in the generation and regulation of cardiac automaticity is currently subject of an extensive research effort and has long been controversial. Among families of ionic channels, Ca(2+) channels have been proposed to substantially contribute to pacemaking. Indeed, Ca(2+) channels are robustly expressed in pacemaker cells, and influence the cell beating rate. Furthermore, they are regulated by the activity of the autonomic nervous system in both a positive and negative way. In this manuscript, we will first discuss how the concept of the involvement of Ca(2+) channels in cardiac pacemaking has been proposed and then subsequently developed by the recent advent in the domain of cardiac physiology of gene-targeting techniques. Secondly, we will indicate how the specific profile of Ca(2+) channels expression in pacemaker tissue can help design drugs which selectively regulate the heart rhythm in the absence of concomitant negative inotropism. Finally, we will indicate how the new possibility to assign a specific gene activity to a given ionic channel involved in cardiac pacemaking could implement the current postgenomic research effort in the construction of the cardiac Physiome.

PubMed Disclaimer

Publication types

Substances

LinkOut - more resources